In mathematics , the classifying space
BSO
(
n
)
{\displaystyle \operatorname {BSO} (n)}
for the special orthogonal group
SO
(
n
)
{\displaystyle \operatorname {SO} (n)}
is the base space of the universal
SO
(
n
)
{\displaystyle \operatorname {SO} (n)}
principal bundle
ESO
(
n
)
→
BSO
(
n
)
{\displaystyle \operatorname {ESO} (n)\rightarrow \operatorname {BSO} (n)}
. This means that
SO
(
n
)
{\displaystyle \operatorname {SO} (n)}
principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into
BSO
(
n
)
{\displaystyle \operatorname {BSO} (n)}
. The isomorphism is given by pullback .
Definition
There is a canonical inclusion of real oriented Grassmannians given by
Gr
~
n
(
R
k
)
↪
Gr
~
n
(
R
k
+
1
)
,
V
↦
V
×
{
0
}
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k+1}),V\mapsto V\times \{0\}}
. Its colimit is:
BSO
(
n
)
:=
Gr
~
n
(
R
∞
)
:=
lim
k
→
∞
Gr
~
n
(
R
k
)
.
{\displaystyle \operatorname {BSO} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{\infty }):=\lim _{k\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k}).}
Since real oriented Grassmannians can be expressed as a homogeneous space by:
Gr
~
n
(
R
k
)
=
SO
(
n
+
k
)
/
(
SO
(
n
)
×
SO
(
k
)
)
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})=\operatorname {SO} (n+k)/(\operatorname {SO} (n)\times \operatorname {SO} (k))}
the group structure carries over to
BSO
(
n
)
{\displaystyle \operatorname {BSO} (n)}
.
Simplest classifying spaces
Since
SO
(
1
)
≅
1
{\displaystyle \operatorname {SO} (1)\cong 1}
is the trivial group ,
BSO
(
1
)
≅
{
∗
}
{\displaystyle \operatorname {BSO} (1)\cong \{*\}}
is the trivial topological space.
Since
SO
(
2
)
≅
U
(
1
)
{\displaystyle \operatorname {SO} (2)\cong \operatorname {U} (1)}
, one has
BSO
(
2
)
≅
BU
(
1
)
≅
C
P
∞
{\displaystyle \operatorname {BSO} (2)\cong \operatorname {BU} (1)\cong \mathbb {C} P^{\infty }}
.
Classification of principal bundles
Given a topological space
X
{\displaystyle X}
the set of
SO
(
n
)
{\displaystyle \operatorname {SO} (n)}
principal bundles on it up to isomorphism is denoted
Prin
SO
(
n
)
(
X
)
{\displaystyle \operatorname {Prin} _{\operatorname {SO} (n)}(X)}
. If
X
{\displaystyle X}
is a CW complex , then the map:
[
X
,
BSO
(
n
)
]
→
Prin
SO
(
n
)
(
X
)
,
[
f
]
↦
f
∗
ESO
(
n
)
{\displaystyle \rightarrow \operatorname {Prin} _{\operatorname {SO} (n)}(X),\mapsto f^{*}\operatorname {ESO} (n)}
is bijective .
Cohomology ring
The cohomology ring of
BSO
(
n
)
{\displaystyle \operatorname {BSO} (n)}
with coefficients in the field
Z
2
{\displaystyle \mathbb {Z} _{2}}
of two elements is generated by the Stiefel–Whitney classes :
H
∗
(
BSO
(
n
)
;
Z
2
)
=
Z
2
[
w
2
,
…
,
w
n
]
.
{\displaystyle H^{*}(\operatorname {BSO} (n);\mathbb {Z} _{2})=\mathbb {Z} _{2}.}
The results holds more generally for every ring with characteristic
char
=
2
{\displaystyle \operatorname {char} =2}
.
The cohomology ring of
BSO
(
n
)
{\displaystyle \operatorname {BSO} (n)}
with coefficients in the field
Q
{\displaystyle \mathbb {Q} }
of rational numbers is generated by Pontrjagin classes and Euler class :
H
∗
(
BSO
(
2
n
)
;
Q
)
≅
Q
[
p
1
,
…
,
p
n
,
e
]
/
(
p
n
−
e
2
)
,
{\displaystyle H^{*}(\operatorname {BSO} (2n);\mathbb {Q} )\cong \mathbb {Q} /(p_{n}-e^{2}),}
H
∗
(
BSO
(
2
n
+
1
)
;
Q
)
≅
Q
[
p
1
,
…
,
p
n
]
.
{\displaystyle H^{*}(\operatorname {BSO} (2n+1);\mathbb {Q} )\cong \mathbb {Q} .}
The results holds more generally for every ring with characteristic
char
≠
2
{\displaystyle \operatorname {char} \neq 2}
.
Infinite classifying space
The canonical inclusions
SO
(
n
)
↪
SO
(
n
+
1
)
{\displaystyle \operatorname {SO} (n)\hookrightarrow \operatorname {SO} (n+1)}
induce canonical inclusions
BSO
(
n
)
↪
BSO
(
n
+
1
)
{\displaystyle \operatorname {BSO} (n)\hookrightarrow \operatorname {BSO} (n+1)}
on their respective classifying spaces. Their respective colimits are denoted as:
SO
:=
lim
n
→
∞
SO
(
n
)
;
{\displaystyle \operatorname {SO} :=\lim _{n\rightarrow \infty }\operatorname {SO} (n);}
BSO
:=
lim
n
→
∞
BSO
(
n
)
.
{\displaystyle \operatorname {BSO} :=\lim _{n\rightarrow \infty }\operatorname {BSO} (n).}
BSO
{\displaystyle \operatorname {BSO} }
is indeed the classifying space of
SO
{\displaystyle \operatorname {SO} }
.
See also
Literature
External links
References
Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151
"universal principal bundle" . nLab . Retrieved 2024-03-14.
Milnor & Stasheff, Theorem 12.4.
Hatcher 02, Example 4D.6.
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑