Misplaced Pages

Classifying space for SO(n)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the classifying space BSO ( n ) {\displaystyle \operatorname {BSO} (n)} for the special orthogonal group SO ( n ) {\displaystyle \operatorname {SO} (n)} is the base space of the universal SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundle ESO ( n ) BSO ( n ) {\displaystyle \operatorname {ESO} (n)\rightarrow \operatorname {BSO} (n)} . This means that SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSO ( n ) {\displaystyle \operatorname {BSO} (n)} . The isomorphism is given by pullback.

Definition

There is a canonical inclusion of real oriented Grassmannians given by Gr ~ n ( R k ) Gr ~ n ( R k + 1 ) , V V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:

BSO ( n ) := Gr ~ n ( R ) := lim k Gr ~ n ( R k ) . {\displaystyle \operatorname {BSO} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{\infty }):=\lim _{k\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k}).}

Since real oriented Grassmannians can be expressed as a homogeneous space by:

Gr ~ n ( R k ) = SO ( n + k ) / ( SO ( n ) × SO ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})=\operatorname {SO} (n+k)/(\operatorname {SO} (n)\times \operatorname {SO} (k))}

the group structure carries over to BSO ( n ) {\displaystyle \operatorname {BSO} (n)} .

Simplest classifying spaces

  • Since SO ( 1 ) 1 {\displaystyle \operatorname {SO} (1)\cong 1} is the trivial group, BSO ( 1 ) { } {\displaystyle \operatorname {BSO} (1)\cong \{*\}} is the trivial topological space.
  • Since SO ( 2 ) U ( 1 ) {\displaystyle \operatorname {SO} (2)\cong \operatorname {U} (1)} , one has BSO ( 2 ) BU ( 1 ) C P {\displaystyle \operatorname {BSO} (2)\cong \operatorname {BU} (1)\cong \mathbb {C} P^{\infty }} .

Classification of principal bundles

Given a topological space X {\displaystyle X} the set of SO ( n ) {\displaystyle \operatorname {SO} (n)} principal bundles on it up to isomorphism is denoted Prin SO ( n ) ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SO} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:

[ X , BSO ( n ) ] Prin SO ( n ) ( X ) , [ f ] f ESO ( n ) {\displaystyle \rightarrow \operatorname {Prin} _{\operatorname {SO} (n)}(X),\mapsto f^{*}\operatorname {ESO} (n)}

is bijective.

Cohomology ring

The cohomology ring of BSO ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Z 2 {\displaystyle \mathbb {Z} _{2}} of two elements is generated by the Stiefel–Whitney classes:

H ( BSO ( n ) ; Z 2 ) = Z 2 [ w 2 , , w n ] . {\displaystyle H^{*}(\operatorname {BSO} (n);\mathbb {Z} _{2})=\mathbb {Z} _{2}.}

The results holds more generally for every ring with characteristic char = 2 {\displaystyle \operatorname {char} =2} .

The cohomology ring of BSO ( n ) {\displaystyle \operatorname {BSO} (n)} with coefficients in the field Q {\displaystyle \mathbb {Q} } of rational numbers is generated by Pontrjagin classes and Euler class:

H ( BSO ( 2 n ) ; Q ) Q [ p 1 , , p n , e ] / ( p n e 2 ) , {\displaystyle H^{*}(\operatorname {BSO} (2n);\mathbb {Q} )\cong \mathbb {Q} /(p_{n}-e^{2}),}
H ( BSO ( 2 n + 1 ) ; Q ) Q [ p 1 , , p n ] . {\displaystyle H^{*}(\operatorname {BSO} (2n+1);\mathbb {Q} )\cong \mathbb {Q} .}

The results holds more generally for every ring with characteristic char 2 {\displaystyle \operatorname {char} \neq 2} .

Infinite classifying space

The canonical inclusions SO ( n ) SO ( n + 1 ) {\displaystyle \operatorname {SO} (n)\hookrightarrow \operatorname {SO} (n+1)} induce canonical inclusions BSO ( n ) BSO ( n + 1 ) {\displaystyle \operatorname {BSO} (n)\hookrightarrow \operatorname {BSO} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:

SO := lim n SO ( n ) ; {\displaystyle \operatorname {SO} :=\lim _{n\rightarrow \infty }\operatorname {SO} (n);}
BSO := lim n BSO ( n ) . {\displaystyle \operatorname {BSO} :=\lim _{n\rightarrow \infty }\operatorname {BSO} (n).}

BSO {\displaystyle \operatorname {BSO} } is indeed the classifying space of SO {\displaystyle \operatorname {SO} } .

See also

Literature

External links

References

  1. Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151
  2. "universal principal bundle". nLab. Retrieved 2024-03-14.
  3. Milnor & Stasheff, Theorem 12.4.
  4. Hatcher 02, Example 4D.6.
Category: