This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message) |
In mathematics, complementary series representations of a reductive real or p-adic Lie groups are certain irreducible unitary representations that are not tempered and do not appear in the decomposition of the regular representation into irreducible representations.
They are rather mysterious: they do not turn up very often, and seem to exist by accident. They were sometimes overlooked, in fact, in some earlier claims to have classified the irreducible unitary representations of certain groups.
Several conjectures in mathematics, such as the Selberg conjecture, are equivalent to saying that certain representations are not complementary. For examples see the representation theory of SL2(R). Elias M. Stein (1972) constructed some families of them for higher rank groups using analytic continuation, sometimes called the Stein complementary series.
References
- A.I. Shtern (2001) , "Complementary series (of representations)", Encyclopedia of Mathematics, EMS Press
- Stein, Elias M. (April 1970), "Analytic Continuation of Group Representations", Advances in Mathematics, 4 (2): 172–207, doi:10.1016/0001-8708(70)90022-8, also reprinted as ISBN 0-300-01428-7
This algebra-related article is a stub. You can help Misplaced Pages by expanding it. |