Misplaced Pages

Completeness (knowledge bases)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2018) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (January 2018) (Learn how and when to remove this message)
(Learn how and when to remove this message)

The term completeness as applied to knowledge bases refers to two different concepts.

Formal logic

In formal logic, a knowledge base KB is complete if there is no formula α such that KB ⊭ α and KB ⊭ ¬α.

Example of knowledge base with incomplete knowledge:

KB := { A ∨ B }

Then we have KB ⊭ A and KB ⊭ ¬A.

In some cases, a consistent knowledge base can be made complete with the closed world assumption—that is, adding all not-entailed literals as negations to the knowledge base. In the above example though, this would not work because it would make the knowledge base inconsistent:

KB' = { A ∨ B, ¬A, ¬B }

In the case where KB := { P(a), Q(a), Q(b) }, KB ⊭ P(b) and KB ⊭ ¬P(b), so, with the closed world assumption, KB' = { P(a), ¬P(b), Q(a), Q(b) }, where KB' ⊨ ¬P(b).

Data management

In data management, completeness is metaknowledge that can be asserted for parts of the KB via completeness assertions.

As example, a knowledge base may contain complete information for predicates R and S, while nothing is asserted for predicate T. Then consider the following queries:

 Q1 :- R(x), S(x)
 Q2 :- R(x), T(x)

For Query 1, the knowledge base would return a complete answer, as only predicates that are themselves complete are intersected. For Query 2, no such conclusion could be made, as predicate T is potentially incomplete.

See also

References

  1. "Integrity = Validity + Completeness". 1989. {{cite journal}}: Cite journal requires |journal= (help)
  2. Levy, Alon (1996). "Obtaining complete answers from incomplete databases". {{cite journal}}: Cite journal requires |journal= (help)


Stub icon

This logic-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This database-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: