Misplaced Pages

Composite gravity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Class of models of gravitation treating gravitons as composite particles

In theoretical physics, composite gravity refers to models that attempted to derive general relativity in a framework where the graviton is constructed as a composite bound state of more elementary particles, usually fermions. A theorem by Steven Weinberg and Edward Witten shows that this is not possible in Lorentz covariant theories: massless particles with spin greater than one are forbidden. The AdS/CFT correspondence may be viewed as a loophole in their argument. However, in this case not only the graviton is emergent; a whole spacetime dimension is emergent, too.

See also

References

  1. Okui, Takemichi (2006). "Probing composite gravity in colliders". Physical Review D. 73 (7). scitation.aip.org: 075012. arXiv:hep-ph/0511082. Bibcode:2006PhRvD..73g5012O. doi:10.1103/PhysRevD.73.075012. S2CID 34102365. Retrieved 2008-07-08.
Theories of gravitation
Standard
Newtonian gravity (NG)
General relativity (GR)
Alternatives to
general relativity
Paradigms
Classical
Quantum-mechanical
Unified-field-theoric
Unified-field-theoric and
quantum-mechanical
Generalisations /
extensions of GR
Pre-Newtonian
theories and
toy models
Related topics


Stub icon

This relativity-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: