In mathematics , the conductor-discriminant formula or Führerdiskriminantenproduktformel , introduced by Hasse (1926 , 1930 ) for abelian extensions and by Artin (1931 ) for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension
L
/
K
{\displaystyle L/K}
of local or global fields from the Artin conductors of the irreducible characters
I
r
r
(
G
)
{\displaystyle \mathrm {Irr} (G)}
of the Galois group
G
=
G
(
L
/
K
)
{\displaystyle G=G(L/K)}
.
Statement
Let
L
/
K
{\displaystyle L/K}
be a finite Galois extension of global fields with Galois group
G
{\displaystyle G}
. Then the discriminant equals
d
L
/
K
=
∏
χ
∈
I
r
r
(
G
)
f
(
χ
)
χ
(
1
)
,
{\displaystyle {\mathfrak {d}}_{L/K}=\prod _{\chi \in \mathrm {Irr} (G)}{\mathfrak {f}}(\chi )^{\chi (1)},}
where
f
(
χ
)
{\displaystyle {\mathfrak {f}}(\chi )}
equals the global Artin conductor of
χ
{\displaystyle \chi }
.
Example
Let
L
=
Q
(
ζ
p
n
)
/
Q
{\displaystyle L=\mathbf {Q} (\zeta _{p^{n}})/\mathbf {Q} }
be a cyclotomic extension of the rationals. The Galois group
G
{\displaystyle G}
equals
(
Z
/
p
n
)
×
{\displaystyle (\mathbf {Z} /p^{n})^{\times }}
. Because
(
p
)
{\displaystyle (p)}
is the only finite prime ramified, the global Artin conductor
f
(
χ
)
{\displaystyle {\mathfrak {f}}(\chi )}
equals the local one
f
(
p
)
(
χ
)
{\displaystyle {\mathfrak {f}}_{(p)}(\chi )}
. Because
G
{\displaystyle G}
is abelian, every non-trivial irreducible character
χ
{\displaystyle \chi }
is of degree
1
=
χ
(
1
)
{\displaystyle 1=\chi (1)}
. Then, the local Artin conductor of
χ
{\displaystyle \chi }
equals the conductor of the
p
{\displaystyle {\mathfrak {p}}}
-adic completion of
L
χ
=
L
k
e
r
(
χ
)
/
Q
{\displaystyle L^{\chi }=L^{\mathrm {ker} (\chi )}/\mathbf {Q} }
, i.e.
(
p
)
n
p
{\displaystyle (p)^{n_{p}}}
, where
n
p
{\displaystyle n_{p}}
is the smallest natural number such that
U
Q
p
(
n
p
)
⊆
N
L
p
χ
/
Q
p
(
U
L
p
χ
)
{\displaystyle U_{\mathbf {Q} _{p}}^{(n_{p})}\subseteq N_{L_{\mathfrak {p}}^{\chi }/\mathbf {Q} _{p}}(U_{L_{\mathfrak {p}}^{\chi }})}
. If
p
>
2
{\displaystyle p>2}
, the Galois group
G
(
L
p
/
Q
p
)
=
G
(
L
/
Q
p
)
=
(
Z
/
p
n
)
×
{\displaystyle G(L_{\mathfrak {p}}/\mathbf {Q} _{p})=G(L/\mathbf {Q} _{p})=(\mathbf {Z} /p^{n})^{\times }}
is cyclic of order
φ
(
p
n
)
{\displaystyle \varphi (p^{n})}
, and by local class field theory and using that
U
Q
p
/
U
Q
p
(
k
)
=
(
Z
/
p
k
)
×
{\displaystyle U_{\mathbf {Q} _{p}}/U_{\mathbf {Q} _{p}}^{(k)}=(\mathbf {Z} /p^{k})^{\times }}
one sees easily that if
χ
{\displaystyle \chi }
factors through a primitive character of
(
Z
/
p
i
)
×
{\displaystyle (\mathbf {Z} /p^{i})^{\times }}
, then
f
(
p
)
(
χ
)
=
p
i
{\displaystyle {\mathfrak {f}}_{(p)}(\chi )=p^{i}}
whence as there are
φ
(
p
i
)
−
φ
(
p
i
−
1
)
{\displaystyle \varphi (p^{i})-\varphi (p^{i-1})}
primitive characters of
(
Z
/
p
i
)
×
{\displaystyle (\mathbf {Z} /p^{i})^{\times }}
we obtain from the formula
d
L
/
Q
=
(
p
φ
(
p
n
)
(
n
−
1
/
(
p
−
1
)
)
)
{\displaystyle {\mathfrak {d}}_{L/\mathbf {Q} }=(p^{\varphi (p^{n})(n-1/(p-1))})}
, the exponent is
∑
i
=
0
n
(
φ
(
p
i
)
−
φ
(
p
i
−
1
)
)
i
=
n
φ
(
p
n
)
−
1
−
(
p
−
1
)
∑
i
=
0
n
−
2
p
i
=
n
φ
(
p
n
)
−
p
n
−
1
.
{\displaystyle \sum _{i=0}^{n}(\varphi (p^{i})-\varphi (p^{i-1}))i=n\varphi (p^{n})-1-(p-1)\sum _{i=0}^{n-2}p^{i}=n\varphi (p^{n})-p^{n-1}.}
Notes
Neukirch 1999 , VII.11.9.
References
Artin, Emil (1931), "Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper." , Journal für die Reine und Angewandte Mathematik (in German), 1931 (164): 1–11, doi :10.1515/crll.1931.164.1 , ISSN 0075-4102 , S2CID 117731518 , Zbl 0001.00801
Hasse, H. (1926), "Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. I: Klassenkörpertheorie." , Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 35 : 1–55
Hasse, H. (1930), "Führer, Diskriminante und Verzweigungskörper relativ-Abelscher Zahlkörper." , Journal für die reine und angewandte Mathematik (in German), 1930 (162): 169–184, doi :10.1515/crll.1930.162.169 , ISSN 0075-4102 , S2CID 199546442
Neukirch, Jürgen (1999). Algebraische Zahlentheorie . Grundlehren der mathematischen Wissenschaften . Vol. 322. Berlin: Springer-Verlag . ISBN 978-3-540-65399-8 . MR 1697859 . Zbl 0956.11021 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑