Misplaced Pages

Conductor-discriminant formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse (1926, 1930) for abelian extensions and by Artin (1931) for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension L / K {\displaystyle L/K} of local or global fields from the Artin conductors of the irreducible characters I r r ( G ) {\displaystyle \mathrm {Irr} (G)} of the Galois group G = G ( L / K ) {\displaystyle G=G(L/K)} .

Statement

Let L / K {\displaystyle L/K} be a finite Galois extension of global fields with Galois group G {\displaystyle G} . Then the discriminant equals

d L / K = χ I r r ( G ) f ( χ ) χ ( 1 ) , {\displaystyle {\mathfrak {d}}_{L/K}=\prod _{\chi \in \mathrm {Irr} (G)}{\mathfrak {f}}(\chi )^{\chi (1)},}

where f ( χ ) {\displaystyle {\mathfrak {f}}(\chi )} equals the global Artin conductor of χ {\displaystyle \chi } .

Example

Let L = Q ( ζ p n ) / Q {\displaystyle L=\mathbf {Q} (\zeta _{p^{n}})/\mathbf {Q} } be a cyclotomic extension of the rationals. The Galois group G {\displaystyle G} equals ( Z / p n ) × {\displaystyle (\mathbf {Z} /p^{n})^{\times }} . Because ( p ) {\displaystyle (p)} is the only finite prime ramified, the global Artin conductor f ( χ ) {\displaystyle {\mathfrak {f}}(\chi )} equals the local one f ( p ) ( χ ) {\displaystyle {\mathfrak {f}}_{(p)}(\chi )} . Because G {\displaystyle G} is abelian, every non-trivial irreducible character χ {\displaystyle \chi } is of degree 1 = χ ( 1 ) {\displaystyle 1=\chi (1)} . Then, the local Artin conductor of χ {\displaystyle \chi } equals the conductor of the p {\displaystyle {\mathfrak {p}}} -adic completion of L χ = L k e r ( χ ) / Q {\displaystyle L^{\chi }=L^{\mathrm {ker} (\chi )}/\mathbf {Q} } , i.e. ( p ) n p {\displaystyle (p)^{n_{p}}} , where n p {\displaystyle n_{p}} is the smallest natural number such that U Q p ( n p ) N L p χ / Q p ( U L p χ ) {\displaystyle U_{\mathbf {Q} _{p}}^{(n_{p})}\subseteq N_{L_{\mathfrak {p}}^{\chi }/\mathbf {Q} _{p}}(U_{L_{\mathfrak {p}}^{\chi }})} . If p > 2 {\displaystyle p>2} , the Galois group G ( L p / Q p ) = G ( L / Q p ) = ( Z / p n ) × {\displaystyle G(L_{\mathfrak {p}}/\mathbf {Q} _{p})=G(L/\mathbf {Q} _{p})=(\mathbf {Z} /p^{n})^{\times }} is cyclic of order φ ( p n ) {\displaystyle \varphi (p^{n})} , and by local class field theory and using that U Q p / U Q p ( k ) = ( Z / p k ) × {\displaystyle U_{\mathbf {Q} _{p}}/U_{\mathbf {Q} _{p}}^{(k)}=(\mathbf {Z} /p^{k})^{\times }} one sees easily that if χ {\displaystyle \chi } factors through a primitive character of ( Z / p i ) × {\displaystyle (\mathbf {Z} /p^{i})^{\times }} , then f ( p ) ( χ ) = p i {\displaystyle {\mathfrak {f}}_{(p)}(\chi )=p^{i}} whence as there are φ ( p i ) φ ( p i 1 ) {\displaystyle \varphi (p^{i})-\varphi (p^{i-1})} primitive characters of ( Z / p i ) × {\displaystyle (\mathbf {Z} /p^{i})^{\times }} we obtain from the formula d L / Q = ( p φ ( p n ) ( n 1 / ( p 1 ) ) ) {\displaystyle {\mathfrak {d}}_{L/\mathbf {Q} }=(p^{\varphi (p^{n})(n-1/(p-1))})} , the exponent is

i = 0 n ( φ ( p i ) φ ( p i 1 ) ) i = n φ ( p n ) 1 ( p 1 ) i = 0 n 2 p i = n φ ( p n ) p n 1 . {\displaystyle \sum _{i=0}^{n}(\varphi (p^{i})-\varphi (p^{i-1}))i=n\varphi (p^{n})-1-(p-1)\sum _{i=0}^{n-2}p^{i}=n\varphi (p^{n})-p^{n-1}.}

Notes

  1. Neukirch 1999, VII.11.9.

References

Category: