In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
p
n
(
x
;
a
,
b
,
c
,
d
)
=
i
n
(
a
+
c
)
n
(
a
+
d
)
n
n
!
3
F
2
(
−
n
,
n
+
a
+
b
+
c
+
d
−
1
,
a
+
i
x
a
+
c
,
a
+
d
;
1
)
{\displaystyle p_{n}(x;a,b,c,d)=i^{n}{\frac {(a+c)_{n}(a+d)_{n}}{n!}}{}_{3}F_{2}\left({\begin{array}{c}-n,n+a+b+c+d-1,a+ix\\a+c,a+d\end{array}};1\right)}
Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials R n (x ;γ,δ,N ), the Hahn polynomials Q n (x ;a ,b ,c ), and the continuous dual Hahn polynomials S n (x ;a ,b ,c ). These polynomials all have q -analogs with an extra parameter q , such as the q-Hahn polynomials Q n (x ;α,β, N ;q ), and so on.
Orthogonality
The continuous Hahn polynomials p n (x ;a ,b ,c ,d ) are orthogonal with respect to the weight function
w
(
x
)
=
Γ
(
a
+
i
x
)
Γ
(
b
+
i
x
)
Γ
(
c
−
i
x
)
Γ
(
d
−
i
x
)
.
{\displaystyle w(x)=\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix).}
In particular, they satisfy the orthogonality relation
1
2
π
∫
−
∞
∞
Γ
(
a
+
i
x
)
Γ
(
b
+
i
x
)
Γ
(
c
−
i
x
)
Γ
(
d
−
i
x
)
p
m
(
x
;
a
,
b
,
c
,
d
)
p
n
(
x
;
a
,
b
,
c
,
d
)
d
x
=
Γ
(
n
+
a
+
c
)
Γ
(
n
+
a
+
d
)
Γ
(
n
+
b
+
c
)
Γ
(
n
+
b
+
d
)
n
!
(
2
n
+
a
+
b
+
c
+
d
−
1
)
Γ
(
n
+
a
+
b
+
c
+
d
−
1
)
δ
n
m
{\displaystyle {\begin{aligned}&{\frac {1}{2\pi }}\int _{-\infty }^{\infty }\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix)\,p_{m}(x;a,b,c,d)\,p_{n}(x;a,b,c,d)\,dx\\&\qquad \qquad ={\frac {\Gamma (n+a+c)\,\Gamma (n+a+d)\,\Gamma (n+b+c)\,\Gamma (n+b+d)}{n!(2n+a+b+c+d-1)\,\Gamma (n+a+b+c+d-1)}}\,\delta _{nm}\end{aligned}}}
for
ℜ
(
a
)
>
0
{\displaystyle \Re (a)>0}
,
ℜ
(
b
)
>
0
{\displaystyle \Re (b)>0}
,
ℜ
(
c
)
>
0
{\displaystyle \Re (c)>0}
,
ℜ
(
d
)
>
0
{\displaystyle \Re (d)>0}
,
c
=
a
¯
{\displaystyle c={\overline {a}}}
,
d
=
b
¯
{\displaystyle d={\overline {b}}}
.
Recurrence and difference relations
The sequence of continuous Hahn polynomials satisfies the recurrence relation
x
p
n
(
x
)
=
p
n
+
1
(
x
)
+
i
(
A
n
+
C
n
)
p
n
(
x
)
−
A
n
−
1
C
n
p
n
−
1
(
x
)
,
{\displaystyle xp_{n}(x)=p_{n+1}(x)+i(A_{n}+C_{n})p_{n}(x)-A_{n-1}C_{n}p_{n-1}(x),}
where
p
n
(
x
)
=
n
!
(
n
+
a
+
b
+
c
+
d
−
1
)
!
(
2
n
+
a
+
b
+
c
+
d
−
1
)
!
p
n
(
x
;
a
,
b
,
c
,
d
)
,
A
n
=
−
(
n
+
a
+
b
+
c
+
d
−
1
)
(
n
+
a
+
c
)
(
n
+
a
+
d
)
(
2
n
+
a
+
b
+
c
+
d
−
1
)
(
2
n
+
a
+
b
+
c
+
d
)
,
and
C
n
=
n
(
n
+
b
+
c
−
1
)
(
n
+
b
+
d
−
1
)
(
2
n
+
a
+
b
+
c
+
d
−
2
)
(
2
n
+
a
+
b
+
c
+
d
−
1
)
.
{\displaystyle {\begin{aligned}{\text{where}}\quad &p_{n}(x)={\frac {n!(n+a+b+c+d-1)!}{(2n+a+b+c+d-1)!}}p_{n}(x;a,b,c,d),\\&A_{n}=-{\frac {(n+a+b+c+d-1)(n+a+c)(n+a+d)}{(2n+a+b+c+d-1)(2n+a+b+c+d)}},\\{\text{and}}\quad &C_{n}={\frac {n(n+b+c-1)(n+b+d-1)}{(2n+a+b+c+d-2)(2n+a+b+c+d-1)}}.\end{aligned}}}
Rodrigues formula
The continuous Hahn polynomials are given by the Rodrigues-like formula
Γ
(
a
+
i
x
)
Γ
(
b
+
i
x
)
Γ
(
c
−
i
x
)
Γ
(
d
−
i
x
)
p
n
(
x
;
a
,
b
,
c
,
d
)
=
(
−
1
)
n
n
!
d
n
d
x
n
(
Γ
(
a
+
n
2
+
i
x
)
Γ
(
b
+
n
2
+
i
x
)
Γ
(
c
+
n
2
−
i
x
)
Γ
(
d
+
n
2
−
i
x
)
)
.
{\displaystyle {\begin{aligned}&\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix)\,p_{n}(x;a,b,c,d)\\&\qquad ={\frac {(-1)^{n}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(\Gamma \left(a+{\frac {n}{2}}+ix\right)\,\Gamma \left(b+{\frac {n}{2}}+ix\right)\,\Gamma \left(c+{\frac {n}{2}}-ix\right)\,\Gamma \left(d+{\frac {n}{2}}-ix\right)\right).\end{aligned}}}
Generating functions
The continuous Hahn polynomials have the following generating function:
∑
n
=
0
∞
Γ
(
n
+
a
+
b
+
c
+
d
)
Γ
(
a
+
c
+
1
)
Γ
(
a
+
d
+
1
)
Γ
(
a
+
b
+
c
+
d
)
Γ
(
n
+
a
+
c
+
1
)
Γ
(
n
+
a
+
d
+
1
)
(
−
i
t
)
n
p
n
(
x
;
a
,
b
,
c
,
d
)
=
(
1
−
t
)
1
−
a
−
b
−
c
−
d
3
F
2
(
1
2
(
a
+
b
+
c
+
d
−
1
)
,
1
2
(
a
+
b
+
c
+
d
)
,
a
+
i
x
a
+
c
,
a
+
d
;
−
4
t
(
1
−
t
)
2
)
.
{\displaystyle {\begin{aligned}&\sum _{n=0}^{\infty }{\frac {\Gamma (n+a+b+c+d)\,\Gamma (a+c+1)\,\Gamma (a+d+1)}{\Gamma (a+b+c+d)\,\Gamma (n+a+c+1)\,\Gamma (n+a+d+1)}}(-it)^{n}p_{n}(x;a,b,c,d)\\&\qquad =(1-t)^{1-a-b-c-d}{}_{3}F_{2}\left({\begin{array}{c}{\frac {1}{2}}(a+b+c+d-1),{\frac {1}{2}}(a+b+c+d),a+ix\\a+c,a+d\end{array}};-{\frac {4t}{(1-t)^{2}}}\right).\end{aligned}}}
A second, distinct generating function is given by
∑
n
=
0
∞
Γ
(
a
+
c
+
1
)
Γ
(
b
+
d
+
1
)
Γ
(
n
+
a
+
c
+
1
)
Γ
(
n
+
b
+
d
+
1
)
t
n
p
n
(
x
;
a
,
b
,
c
,
d
)
=
1
F
1
(
a
+
i
x
a
+
c
;
−
i
t
)
1
F
1
(
d
−
i
x
b
+
d
;
i
t
)
.
{\displaystyle \sum _{n=0}^{\infty }{\frac {\Gamma (a+c+1)\,\Gamma (b+d+1)}{\Gamma (n+a+c+1)\,\Gamma (n+b+d+1)}}t^{n}p_{n}(x;a,b,c,d)=\,_{1}F_{1}\left({\begin{array}{c}a+ix\\a+c\end{array}};-it\right)\,_{1}F_{1}\left({\begin{array}{c}d-ix\\b+d\end{array}};it\right).}
Relation to other polynomials
The Wilson polynomials are a generalization of the continuous Hahn polynomials.
The Bateman polynomials F n (x) are related to the special case a =b =c =d =1/2 of the continuous Hahn polynomials by
p
n
(
x
;
1
2
,
1
2
,
1
2
,
1
2
)
=
i
n
n
!
F
n
(
2
i
x
)
.
{\displaystyle p_{n}\left(x;{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {1}{2}}\right)=i^{n}n!F_{n}\left(2ix\right).}
The Jacobi polynomials P n (x) can be obtained as a limiting case of the continuous Hahn polynomials:
P
n
(
α
,
β
)
=
lim
t
→
∞
t
−
n
p
n
(
1
2
x
t
;
1
2
(
α
+
1
−
i
t
)
,
1
2
(
β
+
1
+
i
t
)
,
1
2
(
α
+
1
+
i
t
)
,
1
2
(
β
+
1
−
i
t
)
)
.
{\displaystyle P_{n}^{(\alpha ,\beta )}=\lim _{t\to \infty }t^{-n}p_{n}\left({\tfrac {1}{2}}xt;{\tfrac {1}{2}}(\alpha +1-it),{\tfrac {1}{2}}(\beta +1+it),{\tfrac {1}{2}}(\alpha +1+it),{\tfrac {1}{2}}(\beta +1-it)\right).}
References
Koekoek, Lesky, & Swarttouw (2010), p. 200.
Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18 : pp. L1017-L1019.
Andrews, Askey, & Roy (1999), p. 333.
Koekoek, Lesky, & Swarttouw (2010), p. 201.
Koekoek, Lesky, & Swarttouw (2010), p. 202.
Koekoek, Lesky, & Swarttouw (2010), p. 202.
Koekoek, Lesky, & Swarttouw (2010), p. 203.
Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten , 2 : 4–34, doi :10.1002/mana.19490020103 , ISSN 0025-584X , MR 0030647
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions , Encyclopedia of Mathematics and its Applications 71, Cambridge: Cambridge University Press , ISBN 978-0-521-62321-6
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑