In mathematics, the continuous q -Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme . Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by
p
n
(
x
;
a
,
b
,
c
,
d
|
q
)
=
a
−
n
e
−
i
n
u
(
a
b
e
2
i
u
,
a
c
,
a
d
;
q
)
n
4
ϕ
3
(
q
−
n
,
a
b
c
d
q
n
−
1
,
a
e
i
(
t
+
2
u
)
,
a
e
−
i
t
;
a
b
e
2
i
u
,
a
c
,
a
d
;
q
;
q
)
{\displaystyle p_{n}(x;a,b,c,d|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_{n}{}_{4}\phi _{3}(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q)}
x
=
cos
(
t
+
u
)
{\displaystyle x=\cos(t+u)}
Gallery
CONTINUOUS q hahn ABS COMPLEX3D Maple PLOT
CONTINUOUS q hahn IIM COMPLEX3D Maple PLOT
CONTINUOUS q hahn RE COMPLEX3D Maple PLOT
CONTINUOUS q hahn ABS density Maple PLOT
CONTINUOUS q hahn im density Maple PLOT
CONTINUOUS q hahn RE density Maple PLOT
References
Roelof p433, Springer 2010
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑