Misplaced Pages

Cross-covariance matrix

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Part of a series on Statistics
Correlation and covariance
For random vectors
For stochastic processes
For deterministic signals
Not to be confused with Covariance matrix. Type of matrix in probability theory and statistics

In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution. Intuitively, the cross-covariance matrix generalizes the notion of covariance to multiple dimensions.

The cross-covariance matrix of two random vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } is typically denoted by K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} or Σ X Y {\displaystyle \Sigma _{\mathbf {X} \mathbf {Y} }} .

Definition

For random vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } , each containing random elements whose expected value and variance exist, the cross-covariance matrix of X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } is defined by

K X Y = cov ( X , Y ) = d e f   E [ ( X μ X ) ( Y μ Y ) T ] {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {cov} (\mathbf {X} ,\mathbf {Y} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} } (Eq.1)

where μ X = E [ X ] {\displaystyle \mathbf {\mu _{X}} =\operatorname {E} } and μ Y = E [ Y ] {\displaystyle \mathbf {\mu _{Y}} =\operatorname {E} } are vectors containing the expected values of X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } . The vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } need not have the same dimension, and either might be a scalar value.

The cross-covariance matrix is the matrix whose ( i , j ) {\displaystyle (i,j)} entry is the covariance

K X i Y j = cov [ X i , Y j ] = E [ ( X i E [ X i ] ) ( Y j E [ Y j ] ) ] {\displaystyle \operatorname {K} _{X_{i}Y_{j}}=\operatorname {cov} =\operatorname {E} )(Y_{j}-\operatorname {E} )]}

between the i-th element of X {\displaystyle \mathbf {X} } and the j-th element of Y {\displaystyle \mathbf {Y} } . This gives the following component-wise definition of the cross-covariance matrix.

K X Y = [ E [ ( X 1 E [ X 1 ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X 1 E [ X 1 ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X 1 E [ X 1 ] ) ( Y n E [ Y n ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X 2 E [ X 2 ] ) ( Y n E [ Y n ] ) ] E [ ( X m E [ X m ] ) ( Y 1 E [ Y 1 ] ) ] E [ ( X m E [ X m ] ) ( Y 2 E [ Y 2 ] ) ] E [ ( X m E [ X m ] ) ( Y n E [ Y n ] ) ] ] {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\mathrm {E} )(Y_{1}-\operatorname {E} )]&\mathrm {E} )(Y_{2}-\operatorname {E} )]&\cdots &\mathrm {E} )(Y_{n}-\operatorname {E} )]\\\\\mathrm {E} )(Y_{1}-\operatorname {E} )]&\mathrm {E} )(Y_{2}-\operatorname {E} )]&\cdots &\mathrm {E} )(Y_{n}-\operatorname {E} )]\\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} )(Y_{1}-\operatorname {E} )]&\mathrm {E} )(Y_{2}-\operatorname {E} )]&\cdots &\mathrm {E} )(Y_{n}-\operatorname {E} )]\end{bmatrix}}}

Example

For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} and Y = ( Y 1 , Y 2 ) T {\displaystyle \mathbf {Y} =\left(Y_{1},Y_{2}\right)^{\rm {T}}} are random vectors, then cov ( X , Y ) {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )} is a 3 × 2 {\displaystyle 3\times 2} matrix whose ( i , j ) {\displaystyle (i,j)} -th entry is cov ( X i , Y j ) {\displaystyle \operatorname {cov} (X_{i},Y_{j})} .

Properties

For the cross-covariance matrix, the following basic properties apply:

  1. cov ( X , Y ) = E [ X Y T ] μ X μ Y T {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {E} -\mathbf {\mu _{X}} \mathbf {\mu _{Y}} ^{\rm {T}}}
  2. cov ( X , Y ) = cov ( Y , X ) T {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {Y} ,\mathbf {X} )^{\rm {T}}}
  3. cov ( X 1 + X 2 , Y ) = cov ( X 1 , Y ) + cov ( X 2 , Y ) {\displaystyle \operatorname {cov} (\mathbf {X_{1}} +\mathbf {X_{2}} ,\mathbf {Y} )=\operatorname {cov} (\mathbf {X_{1}} ,\mathbf {Y} )+\operatorname {cov} (\mathbf {X_{2}} ,\mathbf {Y} )}
  4. cov ( A X + a , B T Y + b ) = A cov ( X , Y ) B {\displaystyle \operatorname {cov} (A\mathbf {X} +\mathbf {a} ,B^{\rm {T}}\mathbf {Y} +\mathbf {b} )=A\,\operatorname {cov} (\mathbf {X} ,\mathbf {Y} )\,B}
  5. If X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } are independent (or somewhat less restrictedly, if every random variable in X {\displaystyle \mathbf {X} } is uncorrelated with every random variable in Y {\displaystyle \mathbf {Y} } ), then cov ( X , Y ) = 0 p × q {\displaystyle \operatorname {cov} (\mathbf {X} ,\mathbf {Y} )=0_{p\times q}}

where X {\displaystyle \mathbf {X} } , X 1 {\displaystyle \mathbf {X_{1}} } and X 2 {\displaystyle \mathbf {X_{2}} } are random p × 1 {\displaystyle p\times 1} vectors, Y {\displaystyle \mathbf {Y} } is a random q × 1 {\displaystyle q\times 1} vector, a {\displaystyle \mathbf {a} } is a q × 1 {\displaystyle q\times 1} vector, b {\displaystyle \mathbf {b} } is a p × 1 {\displaystyle p\times 1} vector, A {\displaystyle A} and B {\displaystyle B} are q × p {\displaystyle q\times p} matrices of constants, and 0 p × q {\displaystyle 0_{p\times q}} is a p × q {\displaystyle p\times q} matrix of zeroes.

Definition for complex random vectors

Main article: Complex random vector ยง Cross-covariance matrix and pseudo-cross-covariance matrix

If Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } are complex random vectors, the definition of the cross-covariance matrix is slightly changed. Transposition is replaced by Hermitian transposition:

K Z W = cov ( Z , W ) = d e f   E [ ( Z μ Z ) ( W μ W ) H ] {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,\mathbf {W} ){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} }

For complex random vectors, another matrix called the pseudo-cross-covariance matrix is defined as follows:

J Z W = cov ( Z , W ¯ ) = d e f   E [ ( Z μ Z ) ( W μ W ) T ] {\displaystyle \operatorname {J} _{\mathbf {Z} \mathbf {W} }=\operatorname {cov} (\mathbf {Z} ,{\overline {\mathbf {W} }}){\stackrel {\mathrm {def} }{=}}\ \operatorname {E} }

Uncorrelatedness

Main article: Uncorrelatedness (probability theory)

Two random vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } are called uncorrelated if their cross-covariance matrix K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} matrix is a zero matrix.

Complex random vectors Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } are called uncorrelated if their covariance matrix and pseudo-covariance matrix is zero, i.e. if K Z W = J Z W = 0 {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {J} _{\mathbf {Z} \mathbf {W} }=0} .

References

  1. ^ Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1.
  2. Taboga, Marco (2010). "Lectures on probability theory and mathematical statistics".
Categories: