Misplaced Pages

Crystal Ball function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Examples of the Crystal Ball function.

The Crystal Ball function, named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function commonly used to model various lossy processes in high-energy physics. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous.

The Crystal Ball function is given by:

f ( x ; α , n , x ¯ , σ ) = N { exp ( ( x x ¯ ) 2 2 σ 2 ) , for  x x ¯ σ > α A ( B x x ¯ σ ) n , for  x x ¯ σ α {\displaystyle f(x;\alpha ,n,{\bar {x}},\sigma )=N\cdot {\begin{cases}\exp(-{\frac {(x-{\bar {x}})^{2}}{2\sigma ^{2}}}),&{\mbox{for }}{\frac {x-{\bar {x}}}{\sigma }}>-\alpha \\A\cdot (B-{\frac {x-{\bar {x}}}{\sigma }})^{-n},&{\mbox{for }}{\frac {x-{\bar {x}}}{\sigma }}\leqslant -\alpha \end{cases}}}

where

A = ( n | α | ) n exp ( | α | 2 2 ) {\displaystyle A=\left({\frac {n}{\left|\alpha \right|}}\right)^{n}\cdot \exp \left(-{\frac {\left|\alpha \right|^{2}}{2}}\right)} ,
B = n | α | | α | {\displaystyle B={\frac {n}{\left|\alpha \right|}}-\left|\alpha \right|} ,
N = 1 σ ( C + D ) {\displaystyle N={\frac {1}{\sigma (C+D)}}} ,
C = n | α | 1 n 1 exp ( | α | 2 2 ) {\displaystyle C={\frac {n}{\left|\alpha \right|}}\cdot {\frac {1}{n-1}}\cdot \exp \left(-{\frac {\left|\alpha \right|^{2}}{2}}\right)} ,
D = π 2 ( 1 + erf ( | α | 2 ) ) {\displaystyle D={\sqrt {\frac {\pi }{2}}}\left(1+\operatorname {erf} \left({\frac {\left|\alpha \right|}{\sqrt {2}}}\right)\right)} .

N {\displaystyle N} (Skwarnicki 1986) is a normalization factor and α {\displaystyle \alpha } , n {\displaystyle n} , x ¯ {\displaystyle {\bar {x}}} and σ {\displaystyle \sigma } are parameters which are fitted with the data. erf is the error function.

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: