Misplaced Pages

Calcium pyrophosphate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Dicalcium diphosphate)
Calcium pyrophosphate
Names
IUPAC name Calcium diphosphate
Other names
  • Diphosphoric acid, calcium salt (1:2)
  • Dicalcium diphosphate
  • Dicalcium pyrophosphate
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.292 Edit this at Wikidata
E number E450(vi) (thickeners, ...)
MeSH Calcium+pyrophosphate
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2Ca.H4O7P2/c;;1-8(2,3)7-9(4,5)6/h;;(H2,1,2,3)(H2,4,5,6)/q2*+2;/p-4Key: JUNWLZAGQLJVLR-UHFFFAOYSA-J
  • InChI=1/2Ca.H4O7P2/c;;1-8(2,3)7-9(4,5)6/h;;(H2,1,2,3)(H2,4,5,6)/q2*+2;/p-4Key: JUNWLZAGQLJVLR-XBHQNQODAN
SMILES
  • ..P()(=O)OP()()=O
Properties
Chemical formula Ca2O7P2
Molar mass 254.053 g/mol
Appearance White powder
Density 3.09 g/cm
Melting point 1,353 °C (2,467 °F; 1,626 K)
Solubility in water insoluble
Solubility soluble in HCl, nitric acids
Refractive index (nD) 1.585
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2 0 0
Flash point Non-flammable
Related compounds
Other anions Calcium phosphate
Other cations Magnesium pyrophosphate
Sodium pyrophosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Calcium pyrophosphate refers to any member of a series of inorganic compound with the formula Ca2P2O7(H2O)n. They are white solids that are insoluble in water. They contain the pyrophosphate anion, although sometimes they are referred to as phosphates. The inventory includes an anhydrous form, a dihydrate (Ca2P2O7·2H2O), and a tetrahydrate (Ca2P2O7·4H2O). Deposition of dihydrate crystals in cartilage are responsible for the severe joint pain in cases of calcium pyrophosphate deposition disease (pseudo gout) whose symptoms are similar to those of gout. Ca2P2O7 is commonly used as a mild abrasive agent in toothpastes because of its insolubility and nonreactivity toward fluoride.

Preparation

Crystals of the tetrahydrate can be prepared by treating a solution of sodium pyrophosphate with calcium nitrate with careful control of pH and temperature:

Na4P2O7(aq)+2 Ca(NO3)2(aq)→ Ca2P2O7·4 H2O + 4 NaNO3

The dihydrate, sometimes termed CPPD, can be formed by the reaction of pyrophosphoric acid with calcium chloride:

CaCl2 + H4P2O7(aq) → Ca2P2O7·2 H2O + HCl.

The anhydrous forms can be prepared by heating dicalcium phosphate:

2 CaHPO4 → Ca2P2O7 + H2O

At 240-500 °C an amorphous phase is formed, heating to 750 °C forms β-Ca2P2O7, heating to 1140 - 1350 °C forms the α-Ca2P2O7.

Structure of anhydrous and hydrated forms

The stable tetrahydrate was originally reported to be rhombohedral but is now believed to be monoclinic. Additionally there is an unstable monoclinic form.

The dihydrate is triclinic, with hydrogen bonding between the two water molecules and hydrogen bonds to the O atoms on the anion. An hexagonal dihydrate has also been reported.

The anhydrous form has 3 polymorphs, α-, β-, and metastable γ (Tα/β=1140ºС). The high temperature form α- is monoclinic (P21/n, a=12.66(1)Å, b=8.542(8)Å, c=5.315(5)Å, Z=4, ρα=2.95 g/cm), with 8 coordinate calcium, the lower temperature form β- is tetragonal (P41, a=b=6.684Å, c=24.144Å, V=915.40Å, Z=8, ρβ=3.128 g/cm), with calcium in four different coordination environments, 2 that are 7 coordinate, one eight and one 9. In both the pyrophosphates are essentially eclipsed.

References

  1. Calcium Pyrophosphate Deposition Disease at eMedicine
  2. ^ Klaus Schrödter; Gerhard Bettermann; Thomas Staffel; Friedrich Wahl; Thomas Klein; Thomas Hofmann (2012). "Phosphoric Acid and Phosphates". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_465.pub3. ISBN 978-3527306732.
  3. ^ Christoffersen, Margaret R.; Balic-Zunic, Tonci; Pehrson, Søren; Christoffersen, Jørgen (2000). "Growth and precipitation of a monoclinic calcium pyrophosphate tetrahydrate indicating auto-inhibition at pH7". Journal of Crystal Growth. 212 (3–4): 500–506. Bibcode:2000JCrGr.212..500C. doi:10.1016/S0022-0248(00)00231-1.
  4. Mandel, Gretchen S.; Renne, Kathleen M.; Kolbach, Ann M.; Kaplan, Wayne D.; Miller, Jay D.; Mandel, Neil S. (1988). "Calcium pyrophosphate crystal deposition disease: Preparation and characterization of crystals". Journal of Crystal Growth. 87 (4): 453–462. Bibcode:1988JCrGr..87..453M. doi:10.1016/0022-0248(88)90093-0.
  5. Parodi, J. A.; Hickok, R. L.; Segelken, W. G.; Cooper, J. R. (1965). "Electronic Paramagnetic Resonance Study of the Thermal Decomposition of Dibasic Calcium Orthophosphate". Journal of the Electrochemical Society. 112 (7): 688. Bibcode:1965JElS..112..688P. doi:10.1149/1.2423665.
  6. Hill, W L; Reynolds, D S; Hendbicks, S B; Jacob, K D (1945-02-01). "Nutritive Evaluation of Defluorinated Phosphates and Other Phosphorus Supplements. I. Preparation and Properties of the Samples". Journal of AOAC International. 28 (1): 105–118. doi:10.1093/jaoac/28.1.105. ISSN 0095-9111.
  7. Calvo, C. (1968-07-01). "Crystal structure of .alpha.-calcium pyrophosphate". Inorganic Chemistry. 7 (7): 1345–1351. doi:10.1021/ic50065a019. ISSN 0020-1669.
  8. Parodi, J. A.; Hickok, R. L.; Segelken, W. G.; Cooper, J. R. (1965). "Electronic Paramagnetic Resonance Study of the Thermal Decomposition of Dibasic Calcium Orthophosphate". Journal of the Electrochemical Society. 112 (7): 688. Bibcode:1965JElS..112..688P. doi:10.1149/1.2423665.
  9. Webb, N. C. (1966). "The crystal structure of β-Ca2P2O". Acta Crystallographica. 21 (6): 942–948. doi:10.1107/S0365110X66004225.
Calcium compounds
Hydrogen & halogens
Chalcogens
Pnictogens
Group 13 & 14
Trans metals
Organics
Categories: