In mathematics, a dilation is a function from a metric space into itself that satisfies the identity
for all points , where is the distance from to and is some positive real number.
In Euclidean space, such a dilation is a similarity of the space. Dilations change the size but not the shape of an object or figure.
Every dilation of a Euclidean space that is not a congruence has a unique fixed point that is called the center of dilation. Some congruences have fixed points and others do not.
See also
References
- Montgomery, Richard (2002), A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, p. 122, ISBN 0-8218-1391-9, MR 1867362.
- King, James R. (1997), "An eye for similarity transformations", in King, James R.; Schattschneider, Doris (eds.), Geometry Turned On: Dynamic Software in Learning, Teaching, and Research, Mathematical Association of America Notes, vol. 41, Cambridge University Press, pp. 109–120, ISBN 9780883850992. See in particular p. 110.
- Audin, Michele (2003), Geometry, Universitext, Springer, Proposition 3.5, pp. 80–81, ISBN 9783540434986.
- Gorini, Catherine A. (2009), The Facts on File Geometry Handbook, Infobase Publishing, p. 49, ISBN 9781438109572.
- Carstensen, Celine; Fine, Benjamin; Rosenberger, Gerhard (2011), Abstract Algebra: Applications to Galois Theory, Algebraic Geometry and Cryptography, Walter de Gruyter, p. 140, ISBN 9783110250091.