Misplaced Pages

Displaced Poisson distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Displaced Poisson Distribution
Probability mass functionDisplaced Poisson distributions for several values of λ {\displaystyle \lambda } and r {\displaystyle r} . At r = 0 {\displaystyle r=0} , the Poisson distribution is recovered. The probability mass function is only defined at integer values.
Parameters λ ( 0 , ) {\displaystyle \lambda \in (0,\infty )} , r ( , ) {\displaystyle r\in (-\infty ,\infty )}
Support k N 0 {\displaystyle k\in \mathbb {N} _{0}}
Mean λ r {\displaystyle \lambda -r}
Mode { λ r 1 , λ r if  λ r + 1 0 if  λ < r + 1 {\displaystyle {\begin{cases}\left\lceil \lambda -r\right\rceil -1,\left\lfloor \lambda -r\right\rfloor &{\text{if }}\lambda \geq r+1\\0&{\text{if }}\lambda <r+1\\\end{cases}}}
Variance λ {\displaystyle \lambda }
MGF

e λ ( e t 1 ) t r I ( r + s , λ e t ) I ( r + s , λ ) {\displaystyle e^{\lambda \left(e^{t-1}\right)-tr}\cdot {\dfrac {I\left(r+s,\lambda e^{t}\right)}{I\left(r+s,\lambda \right)}}} ,   I ( r , λ ) = y = r e λ λ y y ! {\displaystyle I\left(r,\lambda \right)=\sum _{y=r}^{\infty }{\dfrac {e^{-\lambda }\lambda ^{y}}{y!}}}

When r {\displaystyle r} is a negative integer, this becomes e λ ( e t 1 ) t r {\displaystyle e^{\lambda \left(e^{t-1}\right)-tr}}

In statistics, the displaced Poisson, also known as the hyper-Poisson distribution, is a generalization of the Poisson distribution.

Definitions

Probability mass function

The probability mass function is

P ( X = n ) = { e λ λ n + r ( n + r ) ! 1 I ( r , λ ) , n = 0 , 1 , 2 , if  r 0 e λ λ n + r ( n + r ) ! 1 I ( r + s , λ ) , n = s , s + 1 , s + 2 , otherwise {\displaystyle P(X=n)={\begin{cases}e^{-\lambda }{\dfrac {\lambda ^{n+r}}{\left(n+r\right)!}}\cdot {\dfrac {1}{I\left(r,\lambda \right)}},\quad n=0,1,2,\ldots &{\text{if }}r\geq 0\\e^{-\lambda }{\dfrac {\lambda ^{n+r}}{\left(n+r\right)!}}\cdot {\dfrac {1}{I\left(r+s,\lambda \right)}},\quad n=s,s+1,s+2,\ldots &{\text{otherwise}}\end{cases}}}

where λ > 0 {\displaystyle \lambda >0} and r is a new parameter; the Poisson distribution is recovered at r = 0. Here I ( r , λ ) {\displaystyle I\left(r,\lambda \right)} is the Pearson's incomplete gamma function:

I ( r , λ ) = y = r e λ λ y y ! , {\displaystyle I(r,\lambda )=\sum _{y=r}^{\infty }{\frac {e^{-\lambda }\lambda ^{y}}{y!}},}

where s is the integral part of r. The motivation given by Staff is that the ratio of successive probabilities in the Poisson distribution (that is P ( X = n ) / P ( X = n 1 ) {\displaystyle P(X=n)/P(X=n-1)} ) is given by λ / n {\displaystyle \lambda /n} for n > 0 {\displaystyle n>0} and the displaced Poisson generalizes this ratio to λ / ( n + r ) {\displaystyle \lambda /\left(n+r\right)} .

Examples

One of the limitations of the Poisson distribution is that it assumes equidispersion – the mean and variance of the variable are equal. The displaced Poisson distribution may be useful to model underdispersed or overdispersed data, such as:

  • the distribution of insect populations in crop fields;
  • the number of flowers on plants;
  • motor vehicle crash counts; and
  • word or sentence lengths in writing.

Properties

Descriptive Statistics

  • For a displaced Poisson-distributed random variable, the mean is equal to λ r {\displaystyle \lambda -r} and the variance is equal to λ {\displaystyle \lambda } .
  • The mode of a displaced Poisson-distributed random variable are the integer values bounded by λ r 1 {\displaystyle \lambda -r-1} and λ r {\displaystyle \lambda -r} when λ r + 1 {\displaystyle \lambda \geq r+1} . When λ < r + 1 {\displaystyle \lambda <r+1} , there is a single mode at x = 0 {\displaystyle x=0} .
  • The first cumulant κ 1 {\displaystyle \kappa _{1}} is equal to λ r {\displaystyle \lambda -r} and all subsequent cumulants κ n , n 2 {\displaystyle \kappa _{n},n\geq 2} are equal to λ {\displaystyle \lambda } .

References

  1. ^ Staff, P. J. (1967). "The displaced Poisson distribution". Journal of the American Statistical Association. 62 (318): 643–654. doi:10.1080/01621459.1967.10482938.
  2. Chakraborty, Subrata; Ong, S. H. (2017). "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution". Journal of Statistical Distributions and Applications. 4 (1). arXiv:1411.0980. doi:10.1186/s40488-017-0060-9. ISSN 2195-5832.
  3. Staff, P. J. (1964). "The Displaced Poisson Distribution". Australian Journal of Statistics. 6 (1): 12–20. doi:10.1111/j.1467-842X.1964.tb00146.x. hdl:1959.4/66103. ISSN 0004-9581.
  4. Khazraee, S. Hadi; Sáez‐Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique (2015). "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes". Risk Analysis. 35 (5): 919–930. Bibcode:2015RiskA..35..919K. doi:10.1111/risa.12296. ISSN 0272-4332. PMID 25385093. S2CID 206295555.
  5. Antić, Gordana; Stadlober, Ernst; Grzybek, Peter; Kelih, Emmerich (2006), Spiliopoulou, Myra; Kruse, Rudolf; Borgelt, Christian; Nürnberger, Andreas (eds.), "Word Length and Frequency Distributions in Different Text Genres", From Data and Information Analysis to Knowledge Engineering, Berlin/Heidelberg: Springer-Verlag, pp. 310–317, doi:10.1007/3-540-31314-1_37, ISBN 978-3-540-31313-7, retrieved 2023-12-07


Stub icon

This statistics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: