Misplaced Pages

Dobiński's formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In combinatorial mathematics, Dobiński's formula states that the n {\displaystyle n} th Bell number B n {\displaystyle B_{n}} , the number of partitions of a set of size n {\displaystyle n} , equals

B n = 1 e k = 0 k n k ! , {\displaystyle B_{n}={1 \over e}\sum _{k=0}^{\infty }{\frac {k^{n}}{k!}},}

where e {\displaystyle e} denotes Euler's number. The formula is named after G. Dobiński, who published it in 1877.

Probabilistic content

In the setting of probability theory, Dobiński's formula represents the n {\displaystyle n} th moment of the Poisson distribution with mean 1. Sometimes Dobiński's formula is stated as saying that the number of partitions of a set of size n {\displaystyle n} equals the n {\displaystyle n} th moment of that distribution.

Reduced formula

The computation of the sum of Dobiński's series can be reduced to a finite sum of n + o ( n ) {\displaystyle n+o(n)} terms, taking into account the information that B n {\displaystyle B_{n}} is an integer. Precisely one has, for any integer K > 1 {\displaystyle K>1} B n = 1 e k = 0 K 1 k n k ! {\displaystyle B_{n}=\left\lceil {1 \over e}\sum _{k=0}^{K-1}{\frac {k^{n}}{k!}}\right\rceil } provided K n K ! 1 {\displaystyle {\frac {K^{n}}{K!}}\leq 1} (a condition that of course implies K > n {\displaystyle K>n} , but that is satisfied by some K {\displaystyle K} of size n + o ( n ) {\displaystyle n+o(n)} ). Indeed, since K > n {\displaystyle K>n} , one has ( K + j K ) n ( K + j K ) K = ( 1 + j K ) K ( 1 + j 1 ) ( 1 + j 2 ) ( 1 + j K ) = 1 + j 1 2 + j 2 K + j K = ( K + j ) ! K ! j ! . {\displaystyle {\begin{aligned}\displaystyle {\Big (}{\frac {K+j}{K}}{\Big )}^{n}&\leq {\Big (}{\frac {K+j}{K}}{\Big )}^{K}={\Big (}1+{\frac {j}{K}}{\Big )}^{K}\\&\leq {\Big (}1+{\frac {j}{1}}{\Big )}{\Big (}1+{\frac {j}{2}}{\Big )}\dots {\Big (}1+{\frac {j}{K}}{\Big )}\\&={\frac {1+j}{1}}{\frac {2+j}{2}}\dots {\frac {K+j}{K}}\\&={\frac {(K+j)!}{K!j!}}.\end{aligned}}} Therefore ( K + j ) n ( K + j ) ! K n K ! 1 j ! 1 j ! {\displaystyle {\frac {(K+j)^{n}}{(K+j)!}}\leq {\frac {K^{n}}{K!}}{\frac {1}{j!}}\leq {\frac {1}{j!}}} for all j 0 {\displaystyle j\geq 0} so that the tail k K k n k ! = j 0 ( K + j ) n ( K + j ) ! {\displaystyle \sum _{k\geq K}{\frac {k^{n}}{k!}}=\sum _{j\geq 0}{\frac {(K+j)^{n}}{(K+j)!}}} is dominated by the series j 0 1 j ! = e {\displaystyle \sum _{j\geq 0}{\frac {1}{j!}}=e} , which implies 0 < B n 1 e k = 0 K 1 k n k ! < 1 {\displaystyle 0<B_{n}-{\frac {1}{e}}\sum _{k=0}^{K-1}{\frac {k^{n}}{k!}}<1} , whence the reduced formula.

Generalization

Dobiński's formula can be seen as a particular case, for x = 0 {\displaystyle x=0} , of the more general relation: 1 e k = x k n ( k x ) ! = k = 0 n ( n k ) B k x n k {\displaystyle {1 \over e}\sum _{k=x}^{\infty }{\frac {k^{n}}{(k-x)!}}=\sum _{k=0}^{n}{\binom {n}{k}}B_{k}x^{n-k}}

and for x = 1 {\displaystyle x=1} in this formula for Touchard polynomials

T n ( x ) = e x k = 0 x k k n k ! {\displaystyle T_{n}(x)=e^{-x}\sum _{k=0}^{\infty }{\frac {x^{k}k^{n}}{k!}}}

Proof

One proof relies on a formula for the generating function for Bell numbers,

e e x 1 = n = 0 B n n ! x n . {\displaystyle e^{e^{x}-1}=\sum _{n=0}^{\infty }{\frac {B_{n}}{n!}}x^{n}.}

The power series for the exponential gives

e e x = k = 0 e k x k ! = k = 0 1 k ! n = 0 ( k x ) n n ! {\displaystyle e^{e^{x}}=\sum _{k=0}^{\infty }{\frac {e^{kx}}{k!}}=\sum _{k=0}^{\infty }{\frac {1}{k!}}\sum _{n=0}^{\infty }{\frac {(kx)^{n}}{n!}}}

so

e e x 1 = 1 e k = 0 1 k ! n = 0 ( k x ) n n ! {\displaystyle e^{e^{x}-1}={\frac {1}{e}}\sum _{k=0}^{\infty }{\frac {1}{k!}}\sum _{n=0}^{\infty }{\frac {(kx)^{n}}{n!}}}

The coefficient of x n {\displaystyle x^{n}} in this power series must be B n / n ! {\displaystyle B_{n}/n!} , so

B n = 1 e k = 0 k n k ! . {\displaystyle B_{n}={\frac {1}{e}}\sum _{k=0}^{\infty }{\frac {k^{n}}{k!}}.}

Another style of proof was given by Rota. Recall that if x {\displaystyle x} and n {\displaystyle n} are nonnegative integers then the number of one-to-one functions that map a size- n {\displaystyle n} set into a size- x {\displaystyle x} set is the falling factorial

( x ) n = x ( x 1 ) ( x 2 ) ( x n + 1 ) {\displaystyle (x)_{n}=x(x-1)(x-2)\cdots (x-n+1)}

Let f {\displaystyle f} be any function from a size- n {\displaystyle n} set A {\displaystyle A} into a size- x {\displaystyle x} set B {\displaystyle B} . For any b B {\displaystyle b\in B} , let f 1 ( b ) = { a A : f ( a ) = b } {\displaystyle f^{-1}(b)=\{a\in A:f(a)=b\}} . Then { f 1 ( b ) : b B } {\displaystyle \{f^{-1}(b):b\in B\}} is a partition of A {\displaystyle A} . Rota calls this partition the "kernel" of the function f {\displaystyle f} . Any function from A {\displaystyle A} into B {\displaystyle B} factors into

  • one function that maps a member of A {\displaystyle A} to the element of the kernel to which it belongs, and
  • another function, which is necessarily one-to-one, that maps the kernel into B {\displaystyle B} .

The first of these two factors is completely determined by the partition π {\displaystyle \pi } that is the kernel. The number of one-to-one functions from π {\displaystyle \pi } into B {\displaystyle B} is ( x ) | π | {\displaystyle (x)_{|\pi |}} , where | π | {\displaystyle |\pi |} is the number of parts in the partition π {\displaystyle \pi } . Thus the total number of functions from a size- n {\displaystyle n} set A {\displaystyle A} into a size- x {\displaystyle x} set B {\displaystyle B} is

π ( x ) | π | , {\displaystyle \sum _{\pi }(x)_{|\pi |},}

the index π {\displaystyle \pi } running through the set of all partitions of A {\displaystyle A} . On the other hand, the number of functions from A {\displaystyle A} into B {\displaystyle B} is clearly x n {\displaystyle x^{n}} . Therefore, we have

x n = π ( x ) | π | . {\displaystyle x^{n}=\sum _{\pi }(x)_{|\pi |}.}

Rota continues the proof using linear algebra, but it is enlightening to introduce a Poisson-distributed random variable X {\displaystyle X} with mean 1. The equation above implies that the n {\displaystyle n} th moment of this random variable is

E [ X n ] = π E [ ( X ) | π | ] {\displaystyle \mathbb {E} =\sum _{\pi }\mathbb {E} }

where E {\displaystyle \mathbb {E} } stands for expected value. But we shall show that all the quantities E [ ( X ) k ] {\displaystyle \mathbb {E} } equal 1. It follows that

E [ X n ] = π 1 , {\displaystyle \mathbb {E} =\sum _{\pi }1,}

and this is just the number of partitions of the set A {\displaystyle A} .

The quantity E [ ( X ) k ] {\displaystyle \mathbb {E} } is called the k {\displaystyle k} th factorial moment of the random variable X {\displaystyle X} . To show that this equals 1 for all k {\displaystyle k} when X {\displaystyle X} is a Poisson-distributed random variable with mean 1, recall that this random variable assumes each value integer value j 0 {\displaystyle j\geq 0} with probability 1 / ( e j ! ) {\displaystyle 1/(ej!)} . Thus

E [ ( X ) k ] = j = 0 ( j ) k e j ! = 1 e j = 0 j ( j 1 ) ( j k + 1 ) j ( j 1 ) 1 = 1 e j = i 1 ( j i ) ! = 1. {\displaystyle \displaystyle {\begin{aligned}\mathbb {E} &=\sum _{j=0}^{\infty }{\frac {(j)_{k}}{ej!}}\\&={\frac {1}{e}}\sum _{j=0}^{\infty }{\frac {j(j-1)\cdots (j-k+1)}{j(j-1)\cdots 1}}\\&={\frac {1}{e}}\sum _{j=i}^{\infty }{\frac {1}{(j-i)!}}=1.\end{aligned}}}

Notes and references

  1. Dobiński, G. (1877). "Summirung der Reihe n m n ! {\displaystyle \textstyle \sum {\frac {n^{m}}{n!}}} für m = 1, 2, 3, 4, 5, …". Grunert's Archiv (in German). 61: 333–336.
  2. Bender, Edward A.; Williamson, S. Gill (2006). "Theorem 11.3, Dobiński's formula". Foundations of Combinatorics with Applications (PDF). Dover. pp. 319–320. ISBN 0-486-44603-4.
  3. Rota, Gian-Carlo (1964), "The number of partitions of a set" (PDF), American Mathematical Monthly, 71 (5): 498–504, doi:10.2307/2312585, JSTOR 2312585, MR 0161805.
Categories: