Misplaced Pages

Dorsal attention network

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Large-scale brain network involved in voluntary orienting of attention
Dorsal and ventral attention systems
Interaction between dorsal and ventral attention networks enables dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation.

The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF). It is named and most known for its role in voluntary orienting of visuospatial attention.

As the IPS and FEF were noticed to be activated during many attention-demanding tasks, this network was sometimes referred to as the task-positive network to contrast it against the task-negative network, or default mode network. However, this dichotomy is now considered misleading, because the default mode network can be active in certain cognitive tasks.

Anatomy

The core regions of the DAN are the IPS and FEF of each hemisphere. Other regions of the network may include the middle temporal region (MT+), superior parietal lobule (SPL), supplementary eye field (SEF), and ventral premotor cortex.

More recent works indicate that the cerebellum may participate in this network as well. Less studied regions include the right dorsolateral prefrontal cortex and superior colliculus.

Function

The DAN is most prominently involved in goal-directed, voluntary control of visuospatial attention. Corbetta et al., who first defined and named the DAN in the early-to-mid 2000s, suggest that the network is involved in general top-down selection of stimuli and responses, including other modalities (e.g. auditory, tactile). However, evidence that the full DAN is involved in auditory top-down attention has been questioned, as tests that make said claims incorporated both auditory and visual stimuli.

The dorsal attention network dynamically interacts with the ventral attention network (or salience network) according to task demands. The inferior frontal junction configures this interaction between the two networks during task switches or attention shifts.

Clinical significance

Reduced connectivity within the dorsal and ventral attention networks has been linked to higher levels of attention deficit hyperactivity disorder symptoms. Similarly, reduced connectivity between the DAN and the frontoparietal network is associated with major depressive disorder. On the other hand, overactivation of the DAN has been observed in patients with schizophrenia.

Nomenclature

There are several variations of this network's name in neuroscience literature, such as the dorsal attention system, dorsal frontoparietal attention network, and frontoparietal attention network. Until the discovery of other networks, such as the frontoparietal control network, the term task-positive network referred to the DAN. The term task-positive networks is still sometimes used to refer to all non-default-mode networks.

In 2019, Uddin et al. proposed that dorsal frontoparietal network (D-FPN) be used as a standard anatomical name for this network.

References

  1. ^ Vossel, S; Geng, JJ; Fink, GR (April 2014). "Dorsal and ventral attention systems: distinct neural circuits but collaborative roles". The Neuroscientist. 20 (2): 150–9. doi:10.1177/1073858413494269. PMC 4107817. PMID 23835449.
  2. Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. (2006). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems". PNAS. 103 (26): 10046–10051. Bibcode:2006PNAS..10310046F. doi:10.1073/pnas.0604187103. PMC 1480402. PMID 16788060.
  3. Farrant, Kristafor; Uddin, Lucina Q. (2015-02-12). "Asymmetric development of dorsal and ventral attention networks in the human brain". Developmental Cognitive Neuroscience. 12: 165–174. doi:10.1016/j.dcn.2015.02.001. ISSN 1878-9293. PMC 4396619. PMID 25797238.
  4. ^ Kincade, J. M.; Abrams, R. A.; Astafiev, S. V.; Shulman, G. I.; Corbetta, M. (2005). "An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention". Journal of Neuroscience. 25 (18): 4593–4604. doi:10.1523/jneurosci.0236-05.2005. PMC 6725019. PMID 15872107.
  5. ^ Corbetta, M; Shulman, GL (March 2002). "Control of goal-directed and stimulus-driven attention in the brain". Nature Reviews. Neuroscience. 3 (3): 201–15. doi:10.1038/nrn755. PMID 11994752. S2CID 1540678.
  6. ^ Fox, M. D.; Snyder, A. Z.; Vincent, J. L.; Corbetta, M.; Van Essen, D. C.; Raichle, M. E. (2005). "From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks". Proceedings of the National Academy of Sciences. 102 (27): 9673–9678. doi:10.1073/pnas.0504136102. ISSN 0027-8424. PMC 1157105. PMID 15976020.
  7. Spreng, R. Nathan (2012-01-01). "The fallacy of a "task-negative" network". Frontiers in Psychology. 3: 145. doi:10.3389/fpsyg.2012.00145. ISSN 1664-1078. PMC 3349953. PMID 22593750.
  8. Astafiev, S. V.; Shulman, G. I.; Stanley, C. M.; Snyder, A. Z.; Van Essen, D. C.; Corbetta, M. (2003). "Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing". Journal of Neuroscience. 23 (11): 4689–4699. doi:10.1523/JNEUROSCI.23-11-04689.2003. PMC 6740811. PMID 12805308.
  9. ^ Szczepanski, SM; Pinsk, MA; Douglas, MM; Kastner, S; Saalmann, YB (2013-09-24). "Functional and structural architecture of the human dorsal frontoparietal attention network". Proceedings of the National Academy of Sciences of the United States of America. 110 (39): 15806–11. Bibcode:2013PNAS..11015806S. doi:10.1073/pnas.1313903110. PMC 3785784. PMID 24019489.
  10. ^ Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (2019-11-01). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks". Brain Topography. 32 (6): 926–942. doi:10.1007/s10548-019-00744-6. ISSN 1573-6792. PMC 7325607. PMID 31707621.
  11. Somers, David C.; Halko, Mark A.; Levin, Emily J.; Osher, David E.; Tobyne, Sean M.; Brissenden, James A. (2018-11-05). "Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory". Current Biology. 28 (21): 3364–3372.e5. doi:10.1016/j.cub.2018.08.059. ISSN 0960-9822. PMC 6257946. PMID 30344119.
  12. Somers, David C.; Halko, Mark A.; Osher, David E.; Levin, Emily J.; Brissenden, James A. (2016-06-01). "Functional Evidence for a Cerebellar Node of the Dorsal Attention Network". Journal of Neuroscience. 36 (22): 6083–6096. doi:10.1523/JNEUROSCI.0344-16.2016. ISSN 0270-6474. PMC 4887569. PMID 27251628.
  13. Corbetta, Maurizio; Kincade, Michelle J.; Lewis, Chris; Snyder, Abraham Z.; Sapir, Ayelet (November 2005). "Neural basis and recovery of spatial attention deficits in spatial neglect". Nature Neuroscience. 8 (11): 1603–1610. doi:10.1038/nn1574. ISSN 1546-1726. PMID 16234807. S2CID 18224715.
  14. Corbetta, M; Patel, G; Shulman, GL (2008-05-08). "The reorienting system of the human brain: from environment to theory of mind". Neuron. 58 (3): 306–24. doi:10.1016/j.neuron.2008.04.017. PMC 2441869. PMID 18466742.
  15. Braga, RM; Wilson, LR; Sharp, DJ; Wise, RJ; Leech, R (2013-07-01). "Separable networks for top-down attention to auditory non-spatial and visuospatial modalities". NeuroImage. 74: 77–86. doi:10.1016/j.neuroimage.2013.02.023. PMC 3898942. PMID 23435206.
  16. Tamber-Rosenau, BJ; Asplund, CL; Marois, R (2018-11-01). "Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control". Journal of Neurophysiology. 120 (5): 2498–2512. doi:10.1152/jn.00506.2018. PMC 6295539. PMID 30156458.
  17. Castellanos, FX; Aoki, Y (May 2016). "Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development". Biological Psychiatry. Cognitive Neuroscience and Neuroimaging. 1 (3): 253–261. doi:10.1016/j.bpsc.2016.03.004. PMC 5047296. PMID 27713929.
  18. McCarthy, H; Skokauskas, N; Mulligan, A; Donohoe, G; Mullins, D; Kelly, J; Johnson, K; Fagan, A; Gill, M; Meaney, J; Frodl, T (December 2013). "Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood". JAMA Psychiatry. 70 (12): 1329–37. doi:10.1001/jamapsychiatry.2013.2174. PMID 24132732.
  19. Kaiser, RH; Andrews-Hanna, JR; Wager, TD; Pizzagalli, DA (June 2015). "Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity". JAMA Psychiatry. 72 (6): 603–11. doi:10.1001/jamapsychiatry.2015.0071. PMC 4456260. PMID 25785575.
  20. Jimenez, AM; Lee, J; Wynn, JK; Cohen, MS; Engel, SA; Glahn, DC; Nuechterlein, KH; Reavis, EA; Green, MF (2016). "Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia". Frontiers in Psychology. 7: 323. doi:10.3389/fpsyg.2016.00323. PMC 4781842. PMID 27014135.
  21. Ptak, R (October 2012). "The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment". The Neuroscientist. 18 (5): 502–15. doi:10.1177/1073858411409051. PMID 21636849. S2CID 19702611.
  22. Vincent, JL; Kahn, I; Snyder, AZ; Raichle, ME; Buckner, RL (December 2008). "Evidence for a frontoparietal control system revealed by intrinsic functional connectivity". Journal of Neurophysiology. 100 (6): 3328–42. doi:10.1152/jn.90355.2008. PMC 2604839. PMID 18799601.
  23. Mills, BD; Miranda-Dominguez, O; Mills, KL; Earl, E; Cordova, M; Painter, J; Karalunas, SL; Nigg, JT; Fair, DA (2018). "ADHD and attentional control: Impaired segregation of task positive and task negative brain networks". Network Neuroscience (Cambridge, Mass.). 2 (2): 200–217. doi:10.1162/netn_a_00034. PMC 6130439. PMID 30215033.
Human connectomics
Data acquisition and processing
Functional networks
Functional modes/states
Analytic strategies
Categories: