Misplaced Pages

Dunford–Schwartz theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, particularly functional analysis, the Dunford–Schwartz theorem, named after Nelson Dunford and Jacob T. Schwartz, states that the averages of powers of certain norm-bounded operators on L converge in a suitable sense.

Statement

Let  T  be a linear operator from  L 1  to  L 1  with  T 1 1  and  T 1 . Then {\displaystyle {\text{Let }}T{\text{ be a linear operator from }}L^{1}{\text{ to }}L^{1}{\text{ with }}\|T\|_{1}\leq 1{\text{ and }}\|T\|_{\infty }\leq 1{\text{. Then}}}

lim n 1 n k = 0 n 1 T k f {\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n}}\sum _{k=0}^{n-1}T^{k}f}

exists almost everywhere for all  f L 1 . {\displaystyle {\text{exists almost everywhere for all }}f\in L^{1}{\text{.}}}

The statement is no longer true when the boundedness condition is relaxed to even T 1 + ε {\displaystyle \|T\|_{\infty }\leq 1+\varepsilon } .

Notes

  1. Dunford, Nelson; Schwartz, J. T. (1956), "Convergence almost everywhere of operator averages", Journal of Rational Mechanics and Analysis, 5: 129–178, MR 0077090.
  2. Friedman, N. (1966), "On the Dunford–Schwartz theorem", Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 5 (3): 226–231, doi:10.1007/BF00533059, MR 0220900, S2CID 122257150.
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: