In mathematics , the elliptic gamma function is a generalization of the q-gamma function , which is itself the q-analog of the ordinary gamma function . It is closely related to a function studied by Jackson (1905) , and can be expressed in terms of the triple gamma function . It is given by
Γ
(
z
;
p
,
q
)
=
∏
m
=
0
∞
∏
n
=
0
∞
1
−
p
m
+
1
q
n
+
1
/
z
1
−
p
m
q
n
z
.
{\displaystyle \Gamma (z;p,q)=\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1}/z}{1-p^{m}q^{n}z}}.}
It obeys several identities:
Γ
(
z
;
p
,
q
)
=
1
Γ
(
p
q
/
z
;
p
,
q
)
{\displaystyle \Gamma (z;p,q)={\frac {1}{\Gamma (pq/z;p,q)}}\,}
Γ
(
p
z
;
p
,
q
)
=
θ
(
z
;
q
)
Γ
(
z
;
p
,
q
)
{\displaystyle \Gamma (pz;p,q)=\theta (z;q)\Gamma (z;p,q)\,}
and
Γ
(
q
z
;
p
,
q
)
=
θ
(
z
;
p
)
Γ
(
z
;
p
,
q
)
{\displaystyle \Gamma (qz;p,q)=\theta (z;p)\Gamma (z;p,q)\,}
where θ is the q-theta function .
When
p
=
0
{\displaystyle p=0}
, it essentially reduces to the infinite q-Pochhammer symbol :
Γ
(
z
;
0
,
q
)
=
1
(
z
;
q
)
∞
.
{\displaystyle \Gamma (z;0,q)={\frac {1}{(z;q)_{\infty }}}.}
Multiplication Formula
Define
Γ
~
(
z
;
p
,
q
)
:=
(
q
;
q
)
∞
(
p
;
p
)
∞
(
θ
(
q
;
p
)
)
1
−
z
∏
m
=
0
∞
∏
n
=
0
∞
1
−
p
m
+
1
q
n
+
1
−
z
1
−
p
m
q
n
+
z
.
{\displaystyle {\tilde {\Gamma }}(z;p,q):={\frac {(q;q)_{\infty }}{(p;p)_{\infty }}}(\theta (q;p))^{1-z}\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1-z}}{1-p^{m}q^{n+z}}}.}
Then the following formula holds with
r
=
q
n
{\displaystyle r=q^{n}}
(Felder & Varchenko (2002) ).
Γ
~
(
n
z
;
p
,
q
)
Γ
~
(
1
/
n
;
p
,
r
)
Γ
~
(
2
/
n
;
p
,
r
)
⋯
Γ
~
(
(
n
−
1
)
/
n
;
p
,
r
)
=
(
θ
(
r
;
p
)
θ
(
q
;
p
)
)
n
z
−
1
Γ
~
(
z
;
p
,
r
)
Γ
~
(
z
+
1
/
n
;
p
,
r
)
⋯
Γ
~
(
z
+
(
n
−
1
)
/
n
;
p
,
r
)
.
{\displaystyle {\tilde {\Gamma }}(nz;p,q){\tilde {\Gamma }}(1/n;p,r){\tilde {\Gamma }}(2/n;p,r)\cdots {\tilde {\Gamma }}((n-1)/n;p,r)=\left({\frac {\theta (r;p)}{\theta (q;p)}}\right)^{nz-1}{\tilde {\Gamma }}(z;p,r){\tilde {\Gamma }}(z+1/n;p,r)\cdots {\tilde {\Gamma }}(z+(n-1)/n;p,r).}
References
Felder, G.; Varchenko, A. (2002). "Multiplication Formulas for the Elliptic Gamma Function". arXiv :math/0212155 .
Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , 76 (508), The Royal Society: 127–144, Bibcode :1905RSPSA..76..127J , doi :10.1098/rspa.1905.0011 , ISSN 0950-1207 , JSTOR 92601
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Ruijsenaars, S. N. M. (1997), "First order analytic difference equations and integrable quantum systems" , Journal of Mathematical Physics , 38 (2): 1069–1146, Bibcode :1997JMP....38.1069R , doi :10.1063/1.531809 , ISSN 0022-2488 , MR 1434226
Felder, Giovanni; Henriques, André; Rossi, Carlo A.; Zhu, Chenchang (2008). "A gerbe for the elliptic gamma function". Duke Mathematical Journal . 141 . arXiv :math/0601337 . doi :10.1215/S0012-7094-08-14111-0 . S2CID 817920 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑