Elliptic analog of hypergeometric series
In mathematics, an elliptic hypergeometric series is a series Σc n such that the ratio
c n /c n −1 is an elliptic function of n , analogous to generalized hypergeometric series where the ratio is a rational function of n , and basic hypergeometric series where the ratio is a periodic function of the complex number n . They were introduced by Date-Jimbo-Kuniba-Miwa-Okado (1987) and Frenkel & Turaev (1997) in their study of elliptic 6-j symbols .
For surveys of elliptic hypergeometric series see Gasper & Rahman (2004) , Spiridonov (2008) or Rosengren (2016) .
Definitions
The q-Pochhammer symbol is defined by
(
a
;
q
)
n
=
∏
k
=
0
n
−
1
(
1
−
a
q
k
)
=
(
1
−
a
)
(
1
−
a
q
)
(
1
−
a
q
2
)
⋯
(
1
−
a
q
n
−
1
)
.
{\displaystyle \displaystyle (a;q)_{n}=\prod _{k=0}^{n-1}(1-aq^{k})=(1-a)(1-aq)(1-aq^{2})\cdots (1-aq^{n-1}).}
(
a
1
,
a
2
,
…
,
a
m
;
q
)
n
=
(
a
1
;
q
)
n
(
a
2
;
q
)
n
…
(
a
m
;
q
)
n
.
{\displaystyle \displaystyle (a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\ldots (a_{m};q)_{n}.}
The modified Jacobi theta function with argument x and nome p is defined by
θ
(
x
;
p
)
=
(
x
,
p
/
x
;
p
)
∞
{\displaystyle \displaystyle \theta (x;p)=(x,p/x;p)_{\infty }}
θ
(
x
1
,
.
.
.
,
x
m
;
p
)
=
θ
(
x
1
;
p
)
.
.
.
θ
(
x
m
;
p
)
{\displaystyle \displaystyle \theta (x_{1},...,x_{m};p)=\theta (x_{1};p)...\theta (x_{m};p)}
The elliptic shifted factorial is defined by
(
a
;
q
,
p
)
n
=
θ
(
a
;
p
)
θ
(
a
q
;
p
)
.
.
.
θ
(
a
q
n
−
1
;
p
)
{\displaystyle \displaystyle (a;q,p)_{n}=\theta (a;p)\theta (aq;p)...\theta (aq^{n-1};p)}
(
a
1
,
.
.
.
,
a
m
;
q
,
p
)
n
=
(
a
1
;
q
,
p
)
n
⋯
(
a
m
;
q
,
p
)
n
{\displaystyle \displaystyle (a_{1},...,a_{m};q,p)_{n}=(a_{1};q,p)_{n}\cdots (a_{m};q,p)_{n}}
The theta hypergeometric series r +1E r is defined by
r
+
1
E
r
(
a
1
,
.
.
.
a
r
+
1
;
b
1
,
.
.
.
,
b
r
;
q
,
p
;
z
)
=
∑
n
=
0
∞
(
a
1
,
.
.
.
,
a
r
+
1
;
q
;
p
)
n
(
q
,
b
1
,
.
.
.
,
b
r
;
q
,
p
)
n
z
n
{\displaystyle \displaystyle {}_{r+1}E_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};q,p;z)=\sum _{n=0}^{\infty }{\frac {(a_{1},...,a_{r+1};q;p)_{n}}{(q,b_{1},...,b_{r};q,p)_{n}}}z^{n}}
The very well poised theta hypergeometric series r +1V r is defined by
r
+
1
V
r
(
a
1
;
a
6
,
a
7
,
.
.
.
a
r
+
1
;
q
,
p
;
z
)
=
∑
n
=
0
∞
θ
(
a
1
q
2
n
;
p
)
θ
(
a
1
;
p
)
(
a
1
,
a
6
,
a
7
,
.
.
.
,
a
r
+
1
;
q
;
p
)
n
(
q
,
a
1
q
/
a
6
,
a
1
q
/
a
7
,
.
.
.
,
a
1
q
/
a
r
+
1
;
q
,
p
)
n
(
q
z
)
n
{\displaystyle \displaystyle {}_{r+1}V_{r}(a_{1};a_{6},a_{7},...a_{r+1};q,p;z)=\sum _{n=0}^{\infty }{\frac {\theta (a_{1}q^{2n};p)}{\theta (a_{1};p)}}{\frac {(a_{1},a_{6},a_{7},...,a_{r+1};q;p)_{n}}{(q,a_{1}q/a_{6},a_{1}q/a_{7},...,a_{1}q/a_{r+1};q,p)_{n}}}(qz)^{n}}
The bilateral theta hypergeometric series r G r is defined by
r
G
r
(
a
1
,
.
.
.
a
r
;
b
1
,
.
.
.
,
b
r
;
q
,
p
;
z
)
=
∑
n
=
−
∞
∞
(
a
1
,
.
.
.
,
a
r
;
q
;
p
)
n
(
b
1
,
.
.
.
,
b
r
;
q
,
p
)
n
z
n
{\displaystyle \displaystyle {}_{r}G_{r}(a_{1},...a_{r};b_{1},...,b_{r};q,p;z)=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},...,a_{r};q;p)_{n}}{(b_{1},...,b_{r};q,p)_{n}}}z^{n}}
Definitions of additive elliptic hypergeometric series
The elliptic numbers are defined by
[
a
;
σ
,
τ
]
=
θ
1
(
π
σ
a
,
e
π
i
τ
)
θ
1
(
π
σ
,
e
π
i
τ
)
{\displaystyle ={\frac {\theta _{1}(\pi \sigma a,e^{\pi i\tau })}{\theta _{1}(\pi \sigma ,e^{\pi i\tau })}}}
where the Jacobi theta function is defined by
θ
1
(
x
,
q
)
=
∑
n
=
−
∞
∞
(
−
1
)
n
q
(
n
+
1
/
2
)
2
e
(
2
n
+
1
)
i
x
{\displaystyle \theta _{1}(x,q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(n+1/2)^{2}}e^{(2n+1)ix}}
The additive elliptic shifted factorials are defined by
[
a
;
σ
,
τ
]
n
=
[
a
;
σ
,
τ
]
[
a
+
1
;
σ
,
τ
]
.
.
.
[
a
+
n
−
1
;
σ
,
τ
]
{\displaystyle _{n}=...}
[
a
1
,
.
.
.
,
a
m
;
σ
,
τ
]
=
[
a
1
;
σ
,
τ
]
.
.
.
[
a
m
;
σ
,
τ
]
{\displaystyle =...}
The additive theta hypergeometric series r +1e r is defined by
r
+
1
e
r
(
a
1
,
.
.
.
a
r
+
1
;
b
1
,
.
.
.
,
b
r
;
σ
,
τ
;
z
)
=
∑
n
=
0
∞
[
a
1
,
.
.
.
,
a
r
+
1
;
σ
;
τ
]
n
[
1
,
b
1
,
.
.
.
,
b
r
;
σ
,
τ
]
n
z
n
{\displaystyle \displaystyle {}_{r+1}e_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {_{n}}{_{n}}}z^{n}}
The additive very well poised theta hypergeometric series r +1v r is defined by
r
+
1
v
r
(
a
1
;
a
6
,
.
.
.
a
r
+
1
;
σ
,
τ
;
z
)
=
∑
n
=
0
∞
[
a
1
+
2
n
;
σ
,
τ
]
[
a
1
;
σ
,
τ
]
[
a
1
,
a
6
,
.
.
.
,
a
r
+
1
;
σ
,
τ
]
n
[
1
,
1
+
a
1
−
a
6
,
.
.
.
,
1
+
a
1
−
a
r
+
1
;
σ
,
τ
]
n
z
n
{\displaystyle \displaystyle {}_{r+1}v_{r}(a_{1};a_{6},...a_{r+1};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {}{}}{\frac {_{n}}{_{n}}}z^{n}}
Further reading
Spiridonov, V. P. (2013). "Aspects of elliptic hypergeometric functions". In Berndt, Bruce C. (ed.). The Legacy of Srinivasa Ramanujan Proceedings of an International Conference in Celebration of the 125th Anniversary of Ramanujan's Birth; University of Delhi, 17-22 December 2012 . Ramanujan Mathematical Society Lecture Notes Series. Vol. 20. Ramanujan Mathematical Society. pp. 347–361. arXiv :1307.2876 . Bibcode :2013arXiv1307.2876S . ISBN 9789380416137 .
Rosengren, Hjalmar (2016). "Elliptic Hypergeometric Functions". arXiv :1608.06161 .
References
Frenkel, Igor B.; Turaev, Vladimir G. (1997), "Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions" , The Arnold-Gelfand mathematical seminars , Boston, MA: Birkhäuser Boston, pp. 171–204, ISBN 978-0-8176-3883-2 , MR 1429892
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Spiridonov, V. P. (2002), "Theta hypergeometric series", Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001) , NATO Sci. Ser. II Math. Phys. Chem., vol. 77, Dordrecht: Kluwer Acad. Publ., pp. 307–327, arXiv :math/0303204 , Bibcode :2003math......3204S , MR 2000728
Spiridonov, V. P. (2003), "Theta hypergeometric integrals", Rossiĭskaya Akademiya Nauk. Algebra i Analiz , 15 (6): 161–215, arXiv :math/0303205 , Bibcode :2003math......3205S , doi :10.1090/S1061-0022-04-00839-8 , MR 2044635 , S2CID 14471695
Spiridonov, V. P. (2008), "Essays on the theory of elliptic hypergeometric functions", Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk , 63 (3): 3–72, arXiv :0805.3135 , Bibcode :2008RuMaS..63..405S , doi :10.1070/RM2008v063n03ABEH004533 , MR 2479997 , S2CID 16996893
Warnaar, S. Ole (2002), "Summation and transformation formulas for elliptic hypergeometric series", Constructive Approximation , 18 (4): 479–502, arXiv :math/0001006 , doi :10.1007/s00365-002-0501-6 , MR 1920282 , S2CID 18102177
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑