Misplaced Pages

Elliptic hypergeometric series

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Elliptic analog of hypergeometric series

In mathematics, an elliptic hypergeometric series is a series Σcn such that the ratio cn/cn−1 is an elliptic function of n, analogous to generalized hypergeometric series where the ratio is a rational function of n, and basic hypergeometric series where the ratio is a periodic function of the complex number n. They were introduced by Date-Jimbo-Kuniba-Miwa-Okado (1987) and Frenkel & Turaev (1997) in their study of elliptic 6-j symbols.

For surveys of elliptic hypergeometric series see Gasper & Rahman (2004), Spiridonov (2008) or Rosengren (2016).

Definitions

The q-Pochhammer symbol is defined by

( a ; q ) n = k = 0 n 1 ( 1 a q k ) = ( 1 a ) ( 1 a q ) ( 1 a q 2 ) ( 1 a q n 1 ) . {\displaystyle \displaystyle (a;q)_{n}=\prod _{k=0}^{n-1}(1-aq^{k})=(1-a)(1-aq)(1-aq^{2})\cdots (1-aq^{n-1}).}
( a 1 , a 2 , , a m ; q ) n = ( a 1 ; q ) n ( a 2 ; q ) n ( a m ; q ) n . {\displaystyle \displaystyle (a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\ldots (a_{m};q)_{n}.}

The modified Jacobi theta function with argument x and nome p is defined by

θ ( x ; p ) = ( x , p / x ; p ) {\displaystyle \displaystyle \theta (x;p)=(x,p/x;p)_{\infty }}
θ ( x 1 , . . . , x m ; p ) = θ ( x 1 ; p ) . . . θ ( x m ; p ) {\displaystyle \displaystyle \theta (x_{1},...,x_{m};p)=\theta (x_{1};p)...\theta (x_{m};p)}

The elliptic shifted factorial is defined by

( a ; q , p ) n = θ ( a ; p ) θ ( a q ; p ) . . . θ ( a q n 1 ; p ) {\displaystyle \displaystyle (a;q,p)_{n}=\theta (a;p)\theta (aq;p)...\theta (aq^{n-1};p)}
( a 1 , . . . , a m ; q , p ) n = ( a 1 ; q , p ) n ( a m ; q , p ) n {\displaystyle \displaystyle (a_{1},...,a_{m};q,p)_{n}=(a_{1};q,p)_{n}\cdots (a_{m};q,p)_{n}}

The theta hypergeometric series r+1Er is defined by

r + 1 E r ( a 1 , . . . a r + 1 ; b 1 , . . . , b r ; q , p ; z ) = n = 0 ( a 1 , . . . , a r + 1 ; q ; p ) n ( q , b 1 , . . . , b r ; q , p ) n z n {\displaystyle \displaystyle {}_{r+1}E_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};q,p;z)=\sum _{n=0}^{\infty }{\frac {(a_{1},...,a_{r+1};q;p)_{n}}{(q,b_{1},...,b_{r};q,p)_{n}}}z^{n}}

The very well poised theta hypergeometric series r+1Vr is defined by

r + 1 V r ( a 1 ; a 6 , a 7 , . . . a r + 1 ; q , p ; z ) = n = 0 θ ( a 1 q 2 n ; p ) θ ( a 1 ; p ) ( a 1 , a 6 , a 7 , . . . , a r + 1 ; q ; p ) n ( q , a 1 q / a 6 , a 1 q / a 7 , . . . , a 1 q / a r + 1 ; q , p ) n ( q z ) n {\displaystyle \displaystyle {}_{r+1}V_{r}(a_{1};a_{6},a_{7},...a_{r+1};q,p;z)=\sum _{n=0}^{\infty }{\frac {\theta (a_{1}q^{2n};p)}{\theta (a_{1};p)}}{\frac {(a_{1},a_{6},a_{7},...,a_{r+1};q;p)_{n}}{(q,a_{1}q/a_{6},a_{1}q/a_{7},...,a_{1}q/a_{r+1};q,p)_{n}}}(qz)^{n}}

The bilateral theta hypergeometric series rGr is defined by

r G r ( a 1 , . . . a r ; b 1 , . . . , b r ; q , p ; z ) = n = ( a 1 , . . . , a r ; q ; p ) n ( b 1 , . . . , b r ; q , p ) n z n {\displaystyle \displaystyle {}_{r}G_{r}(a_{1},...a_{r};b_{1},...,b_{r};q,p;z)=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},...,a_{r};q;p)_{n}}{(b_{1},...,b_{r};q,p)_{n}}}z^{n}}

Definitions of additive elliptic hypergeometric series

The elliptic numbers are defined by

[ a ; σ , τ ] = θ 1 ( π σ a , e π i τ ) θ 1 ( π σ , e π i τ ) {\displaystyle ={\frac {\theta _{1}(\pi \sigma a,e^{\pi i\tau })}{\theta _{1}(\pi \sigma ,e^{\pi i\tau })}}}

where the Jacobi theta function is defined by

θ 1 ( x , q ) = n = ( 1 ) n q ( n + 1 / 2 ) 2 e ( 2 n + 1 ) i x {\displaystyle \theta _{1}(x,q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(n+1/2)^{2}}e^{(2n+1)ix}}

The additive elliptic shifted factorials are defined by

  • [ a ; σ , τ ] n = [ a ; σ , τ ] [ a + 1 ; σ , τ ] . . . [ a + n 1 ; σ , τ ] {\displaystyle _{n}=...}
  • [ a 1 , . . . , a m ; σ , τ ] = [ a 1 ; σ , τ ] . . . [ a m ; σ , τ ] {\displaystyle =...}

The additive theta hypergeometric series r+1er is defined by

r + 1 e r ( a 1 , . . . a r + 1 ; b 1 , . . . , b r ; σ , τ ; z ) = n = 0 [ a 1 , . . . , a r + 1 ; σ ; τ ] n [ 1 , b 1 , . . . , b r ; σ , τ ] n z n {\displaystyle \displaystyle {}_{r+1}e_{r}(a_{1},...a_{r+1};b_{1},...,b_{r};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {_{n}}{_{n}}}z^{n}}

The additive very well poised theta hypergeometric series r+1vr is defined by

r + 1 v r ( a 1 ; a 6 , . . . a r + 1 ; σ , τ ; z ) = n = 0 [ a 1 + 2 n ; σ , τ ] [ a 1 ; σ , τ ] [ a 1 , a 6 , . . . , a r + 1 ; σ , τ ] n [ 1 , 1 + a 1 a 6 , . . . , 1 + a 1 a r + 1 ; σ , τ ] n z n {\displaystyle \displaystyle {}_{r+1}v_{r}(a_{1};a_{6},...a_{r+1};\sigma ,\tau ;z)=\sum _{n=0}^{\infty }{\frac {}{}}{\frac {_{n}}{_{n}}}z^{n}}

Further reading

  • Spiridonov, V. P. (2013). "Aspects of elliptic hypergeometric functions". In Berndt, Bruce C. (ed.). The Legacy of Srinivasa Ramanujan Proceedings of an International Conference in Celebration of the 125th Anniversary of Ramanujan's Birth; University of Delhi, 17-22 December 2012. Ramanujan Mathematical Society Lecture Notes Series. Vol. 20. Ramanujan Mathematical Society. pp. 347–361. arXiv:1307.2876. Bibcode:2013arXiv1307.2876S. ISBN 9789380416137.
  • Rosengren, Hjalmar (2016). "Elliptic Hypergeometric Functions". arXiv:1608.06161 .

References

Sequences and series
Integer sequences
Basic
Advanced (list)
Fibonacci spiral with square sizes up to 34.
Properties of sequences
Properties of series
Series
Convergence
Explicit series
Convergent
Divergent
Kinds of series
Hypergeometric series
Category: