Misplaced Pages

Varicose veins

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Endovenous thermal ablation) Medical condition in which superficial veins become large and twisted Medical condition
Varicose veins
Left leg of a male affected by varicose veins
Pronunciation
SpecialtyVascular surgery, dermatology
SymptomsNone, fullness, pain in the area
ComplicationsBleeding, superficial thrombophlebitis
Risk factorsObesity, not enough exercise, leg trauma, family history, pregnancy
Diagnostic methodBased on examination
Differential diagnosisArterial insufficiency, peripheral neuritis
TreatmentCompression stockings, exercise, sclerotherapy, surgery
PrognosisCommonly reoccur
FrequencyVery common

Varicose veins, also known as varicoses, are a medical condition in which superficial veins become enlarged and twisted. Although usually just a cosmetic ailment, in some cases they cause fatigue, pain, itching, and nighttime leg cramps. These veins typically develop in the legs, just under the skin. Their complications can include bleeding, skin ulcers, and superficial thrombophlebitis. Varices in the scrotum are known as varicocele, while those around the anus are known as hemorrhoids. The physical, social, and psychological effects of varicose veins can lower their bearers' quality of life.

Varicose veins have no specific cause. Risk factors include obesity, lack of exercise, leg trauma, and family history of the condition. They also develop more commonly during pregnancy. Occasionally they result from chronic venous insufficiency. Underlying causes include weak or damaged valves in the veins. They are typically diagnosed by examination, including observation by ultrasound.

By contrast, spider veins affect the capillaries and are smaller.

Treatment may involve lifestyle changes or medical procedures with the goal of improving symptoms and appearance. Lifestyle changes may include wearing compression stockings, exercising, elevating the legs, and weight loss. Possible medical procedures include sclerotherapy, laser surgery, and vein stripping. However, recurrence is common following treatment.

Varicose veins are very common, affecting about 30% of people at some point in their lives. They become more common with age. Women develop varicose veins about twice as often as men. Varicose veins have been described throughout history and have been treated with surgery since at least the second century BC, when Plutarch tells of such treatment performed on the Roman leader Gaius Marius.

Signs and symptoms

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (January 2016) (Learn how and when to remove this message)
This section is in list format but may read better as prose. You can help by converting this section, if appropriate. Editing help is available. (August 2024)
  • Aching, heavy legs
  • Appearance of spider veins (telangiectasia) in the affected leg
  • Ankle swelling
  • A brownish-yellow shiny skin discoloration near the affected veins
  • Redness, dryness, and itchiness of areas of skin, termed stasis dermatitis or venous eczema
  • Muscle cramps when making sudden movements, such as standing
  • Abnormal bleeding or healing time for injuries in the affected area
  • Lipodermatosclerosis or shrinking skin near the ankles
  • Restless legs syndrome appears to be a common overlapping clinical syndrome in people with varicose veins and other chronic venous insufficiency
  • Atrophie blanche, or white, scar-like formations
  • Burning or throbbing sensation in the legs

People with varicose veins might have a positive D-dimer blood test result due to chronic low-level thrombosis within dilated veins (varices).

Complications

Most varicose veins are reasonably benign, but severe varicosities can lead to major complications, due to the poor circulation through the affected limb.

  • Pain, tenderness, heaviness, inability to walk or stand for long hours
  • Skin conditions / dermatitis which could predispose skin loss
  • Skin ulcers especially near the ankle, usually referred to as venous ulcers
  • Development of carcinoma or sarcoma in longstanding venous ulcers. Over 100 reported cases of malignant transformation have been reported at a rate reported as 0.4% to 1%
  • Severe bleeding from minor trauma, of particular concern in the elderly
  • Blood clotting within affected veins, termed superficial thrombophlebitis. These are frequently isolated to the superficial veins, but can extend into deep veins, becoming a more serious problem.
  • Acute fat necrosis can occur, especially at the ankle of overweight people with varicose veins. Females have a higher tendency of being affected than males

Causes

How a varicose vein forms in a leg. Figure A shows a normal vein with a working valve and normal blood flow. Figure B shows a varicose vein with a deformed valve, abnormal blood flow, and thin, stretched walls. The middle image shows where varicose veins might appear in a leg.
Comparison of healthy and varicose veins

Varicose veins are more common in women than in men and are linked with heredity. Other related factors are pregnancy, obesity, menopause, aging, prolonged standing, leg injury and abdominal straining. Varicose veins are unlikely to be caused by crossing the legs or ankles. Less commonly, but not exceptionally, varicose veins can be due to other causes, such as post-phlebitic obstruction or incontinence, venous and arteriovenous malformations.

Venous reflux is a significant cause. Research has also shown the importance of pelvic vein reflux (PVR) in the development of varicose veins. Varicose veins in the legs could be due to ovarian vein reflux. Both ovarian and internal iliac vein reflux causes leg varicose veins. This condition affects 14% of women with varicose veins or 20% of women who have had vaginal delivery and have leg varicose veins. In addition, evidence suggests that failing to look for and treat pelvic vein reflux can be a cause of recurrent varicose veins.

There is increasing evidence for the role of incompetent perforator veins (or "perforators") in the formation of varicose veins. and recurrent varicose veins.

Varicose veins could also be caused by hyperhomocysteinemia in the body, which can degrade and inhibit the formation of the three main structural components of the artery: collagen, elastin and the proteoglycans. Homocysteine permanently degrades cysteine disulfide bridges and lysine amino acid residues in proteins, gradually affecting function and structure. Simply put, homocysteine is a 'corrosive' of long-living proteins, i.e. collagen or elastin, or lifelong proteins, i.e. fibrillin. These long-term effects are difficult to establish in clinical trials focusing on groups with existing artery decline. Klippel–Trenaunay syndrome and Parkes Weber syndrome are relevant for differential diagnosis.

Another cause is chronic alcohol consumption due to the vasodilatation side effect in relation to gravity and blood viscosity.

Diagnosis

Clinical test

Clinical tests that may be used include:

  • Trendelenburg test – to determine the site of venous reflux and the nature of the saphenofemoral junction

Investigations

Further information: Ultrasonography of chronic insufficiency of the legs

Traditionally, varicose veins were investigated using imaging techniques only if there was a suspicion of deep venous insufficiency, if they were recurrent, or if they involved the saphenopopliteal junction. This practice is now less widely accepted. People with varicose veins should now be investigated using lower limbs venous ultrasonography. The results from a randomised controlled trial on patients with and without routine ultrasound have shown a significant difference in recurrence rate and reoperation rate at 2 and 7 years of follow-up.

Stages

The CEAP (Clinical, Etiological, Anatomical, and Pathophysiological) Classification, developed in 1994 by an international ad hoc committee of the American Venous Forum, outlines these stages

  • C0 – Perthes test – no visible or palpable signs of venous disease
  • C1 – telangectasia or reticular veins
  • C2 – varicose veins
  • C2r – recurrent varicose veins
  • C3 – edema
  • C4 – changes in skin and subcutaneous tissue due to Chronic Venous Disease
  • C4a – pigmentation or eczema
  • C4b – lipodermatosclerosis or atrophie blanche
  • C4c – Corona phlebectatica
  • C5 – healed venous ulcer
  • C6 – active venous ulcer
  • C6r – recurrent active ulcer

Each clinical class is further characterized by a subscript depending upon whether the patient is symptomatic (S) or asymptomatic (A), e.g. C2S.

Treatment

Treatment can be either active or conservative.

Active

Treatment options include surgery, laser and radiofrequency ablation, and ultrasound-guided foam sclerotherapy. Newer treatments include cyanoacrylate glue, mechanochemical ablation, and endovenous steam ablation. No real difference could be found between the treatments, except that radiofrequency ablation could have a better long-term benefit.

Conservative

The National Institute for Health and Clinical Excellence (NICE) produced clinical guidelines in July 2013 recommending that all people with symptomatic varicose veins (C2S) and worse should be referred to a vascular service for treatment. Conservative treatments such as support stockings should not be used unless treatment was not possible.

The symptoms of varicose veins can be controlled to an extent with the following:

  • Elevating the legs often provides temporary symptomatic relief.
  • Advice about regular exercise sounds sensible but is not supported by any evidence.
  • The wearing of graduated compression stockings with variable pressure gradients (Class II or III) has been shown to correct the swelling, increase nutritional exchange, and improve the microcirculation in legs affected by varicose veins. They also often provide relief from the discomfort associated with this disease. Caution should be exercised in their use in patients with concurrent peripheral arterial disease.
  • The wearing of intermittent pneumatic compression devices has been shown to reduce swelling and pain.
  • Diosmin/hesperidin and other flavonoids.
  • Anti-inflammatory medication such as ibuprofen or aspirin can be used as part of treatment for superficial thrombophlebitis along with graduated compression hosiery – but there is a risk of intestinal bleeding. In extensive superficial thrombophlebitis, consideration should be given to anti-coagulation, thrombectomy, or sclerotherapy of the involved vein.
  • Topical gel application helps in managing symptoms related to varicose veins such as inflammation, pain, swelling, itching, and dryness.

Procedures

Stripping

Stripping consists of removal of all or part the saphenous vein (great/long or lesser/short) main trunk. The complications include deep vein thrombosis (5.3%), pulmonary embolism (0.06%), and wound complications including infection (2.2%). There is evidence for the great saphenous vein regrowing after stripping. For traditional surgery, reported recurrence rates, which have been tracked for 10 years, range from 5% to 60%. In addition, since stripping removes the saphenous main trunks, they are no longer available for use as venous bypass grafts in the future (coronary or leg artery vital disease).

Other

Other surgical treatments are:

  • CHIVA method (ambulatory conservative haemodynamic correction of venous insufficiency) is a relatively low-invasive surgical technique that incorporates venous hemodynamics and preserves the superficial venous system. The overall effectiveness compared to stripping, radiofrequency ablation treatment, or endovenous laser therapy is not clear and there is no strong evidence to suggest that CHIVA is superior to stripping, radiofrequency ablation, or endovenous laser therapy for recurrence of varicose veins. There is some low-certainty evidence that CHIVA may result in more bruising compared to radiofrequency ablation treatment.
  • Vein ligation is done at the saphenofemoral junction after ligating the tributaries at the saphenofemoral junction without stripping the long saphenous vein, provided the perforator veins are competent and DVT is absent in the deep veins. With this method, the long saphenous vein is preserved.
  • Cryosurgery – A cryoprobe is passed down the long saphenous vein following saphenofemoral ligation. The probe is then cooled with NO2 or CO2 to −85°F. The vein freezes to the probe and can be retrogradely stripped after 5 seconds of freezing. It is a variant of stripping. The only purpose of this technique is to avoid a distal incision to remove the stripper.

Sclerotherapy

A commonly performed non-surgical treatment for varicose and "spider leg veins" is sclerotherapy, in which medicine called a sclerosant is injected into the veins to make them shrink. The medicines that are commonly used as sclerosants are polidocanol (POL branded Asclera in the United States, Aethoxysklerol in Australia), sodium tetradecyl sulphate (STS), Sclerodex (Canada), hypertonic saline, glycerin and chromated glycerin. STS (branded Fibrovein in Australia) liquids can be mixed at varying concentrations of sclerosant and varying sclerosant/gas proportions, with air or CO2 or O2 to create foams. Foams may allow more veins to be treated per session with comparable efficacy. Their use in contrast to liquid sclerosant is still somewhat controversial, and there is no clear evidence that foams are superior. Sclerotherapy has been used in the treatment of varicose veins for over 150 years. Sclerotherapy is often used for telangiectasias (spider veins) and varicose veins that persist or recur after vein stripping. Sclerotherapy can also be performed using foamed sclerosants under ultrasound guidance to treat larger varicose veins, including the great saphenous and small saphenous veins.

There is some evidence that sclerotherapy is a safe and possibly effective treatment option for improving the cosmetic appearance, reducing residual varicose veins, improving the quality of life, and reducing symptoms that may be present due to the varicose veins. There is also weak evidence that this treatment option may have a slightly higher risk of deep vein thrombosis. It is not known if sclerotherapy decreases the chance of varicose veins returning (recurrent varicose veins). It is also not known which type of substance (liquid or foam) used for the sclerotherapy procedure is more effective and comes with the lowest risk of complications.

Complications of sclerotherapy are rare, but can include blood clots and ulceration. Anaphylactic reactions are "extraordinarily rare but can be life-threatening," and doctors should have resuscitation equipment ready. There has been one reported case of stroke after ultrasound-guided sclerotherapy when an unusually large dose of sclerosant foam was injected.

Endovenous thermal ablation

There are three kinds of endovenous thermal ablation treatment possible: laser, radiofrequency, and steam.

The Australian Medical Services Advisory Committee (MSAC) in 2008 determined that endovenous laser treatment/ablation (ELA) for varicose veins "appears to be more effective in the short term, and at least as effective overall, as the comparative procedure of junction ligation and vein stripping for the treatment of varicose veins." It also found in its assessment of available literature, that "occurrence rates of more severe complications such as DVT, nerve injury, and paraesthesia, post-operative infections, and haematomas, appears to be greater after ligation and stripping than after EVLT". Complications for ELA include minor skin burns (0.4%) and temporary paresthesia (2.1%). The longest study of endovenous laser ablation is 39 months.

Two prospective randomized trials found speedier recovery and fewer complications after radiofrequency ablation (ERA) compared to open surgery. Myers wrote that open surgery for small saphenous vein reflux is obsolete. Myers said these veins should be treated with endovenous techniques, citing high recurrence rates after surgical management, and risk of nerve damage up to 15%. By comparison ERA has been shown to control 80% of cases of small saphenous vein reflux at 4 years, said Myers. Complications for ERA include burns, paraesthesia, clinical phlebitis and slightly higher rates of deep vein thrombosis (0.57%) and pulmonary embolism (0.17%). One 3-year study compared ERA, with a recurrence rate of 33%, to open surgery, which had a recurrence rate of 23%.

Steam treatment consists in injection of pulses of steam into the sick vein. This treatment which works with a natural agent (water) has results similar to laser or radiofrequency. The steam presents a lot of post-operative advantages for the patient (good aesthetic results, less pain, etc.) Steam is a very promising treatment for both doctors (easy introduction of catheters, efficient on recurrences, ambulatory procedure, easy and economic procedure) and patients (less post-operative pain, a natural agent, fast recovery to daily activities).

ELA and ERA require specialized training for doctors and special equipment. ELA is performed as an outpatient procedure and does not require an operating theatre, nor does the patient need a general anaesthetic. Doctors use high-frequency ultrasound during the procedure to visualize the anatomical relationships between the saphenous structures.

Some practitioners also perform phlebectomy or ultrasound-guided sclerotherapy at the time of endovenous treatment. This is also known as an ambulatory phlebectomy. The distal veins are removed following the complete ablation of the proximal vein. This treatment is most commonly used for varicose veins off of the great saphenous vein, small saphenous vein, and pudendal veins. Follow-up treatment to smaller branch varicose veins is often needed in the weeks or months after the initial procedure.

Medical Adhesive

Also called medical super glue, medical adhesive is an advanced non-surgical treatment for varicose veins during which a solution is injected into the diseased vein through a small catheter and under the assistance of ultrasound-guided imagery. The "super glue" solution is made of cyanoacrylate, aiming at sealing the vein and rerouting the blood flow to other healthy veins.

Post-treatment, the body will naturally absorb the treated vein which will disappear. Involving only a small incision and no hospital stay, medical super glue has generated great interest within the last years, with a success rate of about 96.8%.

A follow-up consultation is required after this treatment, just like any other one, in order to re-assess the diseased vein and further treat it if needed.

Echotherapy Treatment

In the field of varicose veins, the latest medical innovation is high-intensity focused ultrasound therapy (HIFU). This method is completely non-invasive and is not necessarily performed in an operating room, unlike existing techniques. This is because the procedure involves treating from outside the body, able to penetrate the skin without damage, to treat the veins in a targeted area. This leaves no scars and allows the patient to return to their daily life immediately.

Epidemiology

Varicose veins are most common after age 50. It is more prevalent in females. There is a hereditary role. It has been seen in smokers, those who have chronic constipation, and in people with occupations which necessitate long periods of standing such as wait staff, nurses, conductors (musical and bus), stage actors, umpires (cricket, javelin, etc.), the King's guards, lectern orators, security guards, traffic police officers, vendors, surgeons, etc.

References

  1. ^ "Varicose Veins". National Heart, Lung, and Blood Institute (NHLBI). Retrieved 20 January 2019.
  2. ^ "Varicose Veins – Cardiovascular Disorders". Merck Manuals Professional Edition. Retrieved 20 January 2019.
  3. ^ "Varicose Veins". medlineplus.gov. Retrieved 20 January 2019.
  4. Buttaro TM, Trybulski JA, Polgar-Bailey P, Sandberg-Cook J (2016). BOPOD – Primary Care: A Collaborative Practice. Elsevier Health Sciences. p. 609. ISBN 9780323355216.
  5. "Varicose veins". Mayo Clinic. Retrieved 19 June 2024.
  6. Lumley E, Phillips P, Aber A, Buckley-Woods H, Jones GL, Michaels JA (April 2019). "Experiences of living with varicose veins: A systematic review of qualitative research" (PDF). Journal of Clinical Nursing. 28 (7–8): 1085–1099. doi:10.1111/jocn.14720. PMID 30461103. S2CID 53943553.
  7. ^ "Varicose veins and spider veins". womenshealth.gov. 15 December 2016. Retrieved 21 January 2019.
  8. ^ Baram A, Rashid DF, Saqat BH (August 2022). "Non-randomized comparative study of three methods for great saphenous vein ablation associated with mini-phlebectomy; 48 months clinical and sonographic outcome". Annals of Medicine and Surgery. 80: 104036. doi:10.1016/j.amsu.2022.104036. ISSN 2049-0801. PMC 9283499. PMID 35846854. S2CID 250251544.
  9. "Varicose veins Introduction – Health encyclopaedia". NHS Direct. 8 November 2007. Archived from the original on 9 November 2007. Retrieved 20 January 2019.
  10. ^ Tisi PV (January 2011). "Varicose veins". BMJ Clinical Evidence. 2011. PMC 3217733. PMID 21477400.
  11. ^ "Varicose veins". nhs.uk. 2017-10-23. Retrieved 2020-12-29.
  12. Chandra A. "Clinical review of varicose veins: epidemiology, diagnosis and management". GPonline.
  13. "Chronic Venous Insufficiency". The Lecturio Medical Concept Library. Retrieved 9 July 2021.
  14. "Varicose Vein Surgery Workup: Approach Considerations, Tests for Ruling Out Deep Venous Thrombosis As Cause, Tests for Demonstrating Reflux". emedicine.medscape.com. Retrieved 2022-04-12.
  15. ^ Goldman M. (1995) Sclerotherapy, Treatment of Varicose and Telangiectatic Leg Veins. Hardcover Text, 2nd Ed.
  16. Ng MY, Andrew T, Spector TD, Jeffery S (March 2005). "Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy, unselected sibling pairs". Journal of Medical Genetics. 42 (3): 235–239. doi:10.1136/jmg.2004.024075. PMC 1736007. PMID 15744037.
  17. Griesmann K (March 16, 2011). "Myth or Fact: Crossing Your Legs Causes Varicose Veins". Duke University Health System. Archived from the original on 2014-03-05. Retrieved March 1, 2014.
  18. Franceschi C (1996). "Physiopathologie Hémodynamique de l'Insuffisance veineuse". Chirurgie des veines des Membres Inférieurs. AERCV editions 23. Paris. p. 49.{{cite book}}: CS1 maint: location missing publisher (link)
  19. Hobbs JT (October 2005). "Varicose veins arising from the pelvis due to ovarian vein incompetence". International Journal of Clinical Practice. 59 (10). Int J Clin Pract.: 1195–1203. doi:10.1111/j.1368-5031.2005.00631.x. PMID 16178988. S2CID 1706825.
  20. Giannoukas AD, Dacie JE, Lumley JS (July 2000). "Recurrent varicose veins of both lower limbs due to bilateral ovarian vein incompetence". Annals of Vascular Surgery. 14 (4): 397–400. doi:10.1007/s100169910075. PMID 10943794. S2CID 23565190.
  21. Marsh P, Holdstock J, Harrison C, Smith C, Price BA, Whiteley MS (June 2009). "Pelvic vein reflux in female patients with varicose veins: comparison of incidence between a specialist private vein clinic and the vascular department of a National Health Service District General Hospital". Phlebology. 24 (3): 108–113. doi:10.1258/phleb.2008.008041. PMID 19470861. S2CID 713104.
  22. Ostler AE, Holdstock JM, Harrison CC, Fernandez-Hart TJ, Whiteley MS (October 2014). "Primary avalvular varicose anomalies are a naturally occurring phenomenon that might be misdiagnosed as neovascular tissue in recurrent varicose veins". Journal of Vascular Surgery. Venous and Lymphatic Disorders. 2 (4): 390–396. doi:10.1016/j.jvsv.2014.05.003. PMID 26993544.
  23. Whiteley MS (September 2014). "Part one: for the motion. Venous perforator surgery is proven and does reduce recurrences". European Journal of Vascular and Endovascular Surgery. 48 (3): 239–242. doi:10.1016/j.ejvs.2014.06.044. PMID 25132056.
  24. Rutherford EE, Kianifard B, Cook SJ, Holdstock JM, Whiteley MS (May 2001). "Incompetent perforating veins are associated with recurrent varicose veins". European Journal of Vascular and Endovascular Surgery. 21 (5): 458–460. doi:10.1053/ejvs.2001.1347. PMID 11352523.
  25. Ayala C, Spellberg B, eds. (2009). Pathophysiology for the Boards and Wards (4th ed.). Lippincott Williams & Wilkins. ISBN 978-0-7817-8743-7.
  26. Blomgren L, Johansson G, Emanuelsson L, Dahlberg-Åkerman A, Thermaenius P, Bergqvist D (August 2011). "Late follow-up of a randomized trial of routine duplex imaging before varicose vein surgery". The British Journal of Surgery. 98 (8): 1112–1116. doi:10.1002/bjs.7579. PMID 21618499. S2CID 5732888.
  27. O'Flynn N, Vaughan M, Kelley K (June 2014). "Diagnosis and management of varicose veins in the legs: NICE guideline". The British Journal of General Practice. 64 (623): 314–315. doi:10.3399/bjgp14X680329. PMC 4032011. PMID 24868066.
  28. Eklöf B, Rutherford RB, Bergan JJ, Carpentier PH, Gloviczki P, Kistner RL, et al. (December 2004). "Revision of the CEAP classification for chronic venous disorders: consensus statement". Journal of Vascular Surgery. 40 (6): 1248–1252. doi:10.1016/j.jvs.2004.09.027. PMID 15622385.
  29. ^ Williams NS, Bulstrode CJ, O'Connell PR, Bailey H, McNeill Love RJ, eds. (2013). Bailey & Love's Short Practice of Surgery (26th ed.). London: Hodder Arnold. ISBN 978-1-4441-2127-8.
  30. Kheirelseid EA, Crowe G, Sehgal R, Liakopoulos D, Bela H, Mulkern E, et al. (March 2018). "Systematic review and meta-analysis of randomized controlled trials evaluating long-term outcomes of endovenous management of lower extremity varicose veins". Journal of Vascular Surgery. Venous and Lymphatic Disorders. 6 (2): 256–270. doi:10.1016/j.jvsv.2017.10.012. PMID 29292115.
  31. Hamann SA, Timmer-de Mik L, Fritschy WM, Kuiters GR, Nijsten TE, van den Bos RR (July 2019). "Randomized clinical trial of endovenous laser ablation versus direct and indirect radiofrequency ablation for the treatment of great saphenous varicose veins". The British Journal of Surgery. 106 (8): 998–1004. doi:10.1002/bjs.11187. PMC 6618092. PMID 31095724.
  32. Whing J, Nandhra S, Nesbitt C, Stansby G (August 2021). "Interventions for great saphenous vein incompetence". The Cochrane Database of Systematic Reviews. 2021 (8): CD005624. doi:10.1002/14651858.CD005624.pub4. PMC 8407488. PMID 34378180.
  33. NICE (July 23, 2013). "Varicose veins in the legs: The diagnosis and management of varicose veins. 1.2 Referral to a vascular service". National Institute for Health and Care Excellence. Retrieved August 25, 2014.
  34. Campbell B (August 2006). "Varicose veins and their management". BMJ. 333 (7562): 287–292. doi:10.1136/bmj.333.7562.287. PMC 1526945. PMID 16888305.
  35. "Changes of cutaneous microcirculation from elasto-compression in chronic venous insufficiency". International Angiology. 7 (2): 146–154. April 1988. {{cite journal}}: Unknown parameter |authors= ignored (help)
  36. Yamany A, Hamdy B (July 2016). "Effect of sequential pneumatic compression therapy on venous blood velocity, refilling time, pain and quality of life in women with varicose veins: a randomized control study". Journal of Physical Therapy Science. 28 (7): 1981–1987. doi:10.1589/jpts.28.1981. PMC 4968489. PMID 27512247.
  37. van Rij AM, Chai J, Hill GB, Christie RA (December 2004). "Incidence of deep vein thrombosis after varicose vein surgery". The British Journal of Surgery. 91 (12): 1582–1585. doi:10.1002/bjs.4701. PMID 15386324. S2CID 35827790.
  38. Munasinghe A, Smith C, Kianifard B, Price BA, Holdstock JM, Whiteley MS (July 2007). "Strip-track revascularization after stripping of the great saphenous vein". The British Journal of Surgery. 94 (7): 840–843. doi:10.1002/bjs.5598. PMID 17410557. S2CID 22713772.
  39. Hammarsten J, Pedersen P, Cederlund CG, Campanello M (August 1990). "Long saphenous vein saving surgery for varicose veins. A long-term follow-up". European Journal of Vascular Surgery. 4 (4): 361–364. doi:10.1016/S0950-821X(05)80867-9. PMID 2204548.
  40. ^ Bellmunt-Montoya S, Escribano JM, Pantoja Bustillos PE, Tello-Díaz C, Martinez-Zapata MJ (September 2021). "CHIVA method for the treatment of chronic venous insufficiency". The Cochrane Database of Systematic Reviews. 2021 (9): CD009648. doi:10.1002/14651858.CD009648.pub4. PMC 8481765. PMID 34590305.
  41. Schouten R, Mollen RM, Kuijpers HC (May 2006). "A comparison between cryosurgery and conventional stripping in varicose vein surgery: perioperative features and complications". Annals of Vascular Surgery. 20 (3): 306–311. doi:10.1007/s10016-006-9051-x. PMID 16779510. S2CID 24644360.
  42. ^ de Ávila Oliveira R, Riera R, Vasconcelos V, Baptista-Silva JC (December 2021). "Injection sclerotherapy for varicose veins". The Cochrane Database of Systematic Reviews. 2021 (12): CD001732. doi:10.1002/14651858.CD001732.pub3. PMC 8660237. PMID 34883526.
  43. Pak, L. K. et al. "Veins & Lymphatics," in Lange's Current Surgical Diagnosis & Treatment, 11th ed., McGraw-Hill.
  44. de Ávila Oliveira, Ricardo; Riera, Rachel; Vasconcelos, Vladimir; Baptista-Silva, Jose Cc (2021-12-10). "Injection sclerotherapy for varicose veins". The Cochrane Database of Systematic Reviews. 2021 (12): CD001732. doi:10.1002/14651858.CD001732.pub3. ISSN 1469-493X. PMC 8660237. PMID 34883526.
  45. Thibault P (2007). "Sclerotherapy and Ultrasound-Guided Sclerotherapy". In Bergan JJ (ed.). The Vein Book. pp. 189–199. doi:10.1016/B978-012369515-4/50023-5. ISBN 978-0-12-369515-4.
  46. Padbury A, Benveniste GL (December 2004). "Foam echo sclerotherapy of the small saphenous vein". Australian and New Zealand Journal of Phlebology. 8 (1).
  47. Finkelmeier, William R. (2004) "Sclerotherapy", Ch. 12 in ACS Surgery: Principles & Practice, WebMD, ISBN 0-9748327-4-X.
  48. Scurr JR, Fisher RK, Wallace SB (2007). "Anaphylaxis Following Foam Sclerotherapy: A Life Threatening Complication of Non Invasive Treatment For Varicose Veins". EJVES Extra. 13 (6): 87–89. doi:10.1016/j.ejvsextra.2007.02.005.
  49. Forlee, Martin V.; Grouden, Maria; Moore, Dermot J.; Shanik, Gregor (January 2006). "Stroke after varicose vein foam injection sclerotherapy". Journal of Vascular Surgery. 43 (1): 162–164. doi:10.1016/j.jvs.2005.09.032. PMID 16414404. Retrieved 8 October 2024.
  50. Malskat WS, Stokbroekx MA, van der Geld CW, Nijsten TE, van den Bos RR (March 2014). "Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation". Lasers in Medical Science. 29 (2): 423–429. doi:10.1007/s10103-013-1449-4. PMID 24292197. S2CID 28784095.
  51. Medical Services Advisory Committee, ELA for varicose veins. MSAC application 1113, Dept of Health and Ageing, Commonwealth of Australia, 2008.
  52. Elmore FA, Lackey D (2008). "Effectiveness of endovenous laser treatment in eliminating superficial venous reflux". Phlebology. 23 (1): 21–31. doi:10.1258/phleb.2007.007019. PMID 18361266. S2CID 24421232.
  53. Publishing, BIBA (2007-02-13). "What is the best treatment for varicose veins?". Vascular News. Retrieved 2021-08-31.
  54. Rautio TT, Perälä JM, Wiik HT, Juvonen TS, Haukipuro KA (June 2002). "Endovenous obliteration with radiofrequency-resistive heating for greater saphenous vein insufficiency: a feasibility study". Journal of Vascular and Interventional Radiology. 13 (6): 569–575. doi:10.1016/S1051-0443(07)61649-2. PMID 12050296.
  55. Lurie F, Creton D, Eklof B, Kabnick LS, Kistner RL, Pichot O, et al. (January 2005). "Prospective randomised study of endovenous radiofrequency obliteration (closure) versus ligation and vein stripping (EVOLVeS): two-year follow-up". European Journal of Vascular and Endovascular Surgery. 29 (1): 67–73. doi:10.1016/j.ejvs.2004.09.019. PMID 15570274.
  56. Myers K (December 2004). "An opinion – surgery for small saphenous reflux is obsolete!". Australian and New Zealand Journal of Phlebology. 8 (1).
  57. van den Bos RR, Malskat WS, De Maeseneer MG, de Roos KP, Groeneweg DA, Kockaert MA, et al. (August 2014). "Randomized clinical trial of endovenous laser ablation versus steam ablation (LAST trial) for great saphenous varicose veins". The British Journal of Surgery. 101 (9): 1077–1083. doi:10.1002/bjs.9580. PMID 24981585. S2CID 37876228.
  58. Milleret R (2011). "Obliteration of varicose veins with superheated steam". Phlebolymphology. 19 (4): 174–181.
  59. Woźniak W, Mlosek RK, Ciostek P (April 2015). "Assessment of the efficacy and safety of steam vein sclerosis as compared to classic surgery in lower extremity varicose vein management". Wideochirurgia I Inne Techniki Maloinwazyjne = Videosurgery and Other Miniinvasive Techniques. 10 (1): 15–24. doi:10.5114/wiitm.2015.48573. PMC 4414100. PMID 25960788.
  60. "Ambulatory Phlebectomy". ScienceDirect.
  61. Yazdani N (2021). "Medical Adhesive Closure". Melbourne Varicose Veins.
  62. Yassine Z (2021). "Medical Super Glue". The Vein Institute.
  63. Chollet, Daniel (12 October 2022). "ULTRasOns. au diable les varices". le Régional L'écho. p. 28.
  64. Tamparo C (2011). Diseases of the Human Body (5th ed.). Philadelphia, PA: F.A. Davis Company. p. 335. ISBN 978-0-8036-2505-1.
  65. "Varicose Veins – How to Prevent Them in Time?" (in Slovenian). Retrieved 11 March 2017.

External links

ClassificationD
External resources
Cardiovascular disease (vessels)
Arteries, arterioles
and capillaries
Inflammation
Arteriosclerosis
Peripheral artery disease
Aneurysm / dissection /
pseudoaneurysm
Vascular malformation
Vascular nevus
Veins
Inflammation
Venous thrombosis /
Thrombophlebitis
Varicose veins
Other
Arteries or veins
Blood pressure
Hypertension
Hypotension
Categories: