Misplaced Pages

Equivariant algebraic K-theory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (April 2015) (Learn how and when to remove this message)

In mathematics, the equivariant algebraic K-theory is an algebraic K-theory associated to the category Coh G ( X ) {\displaystyle \operatorname {Coh} ^{G}(X)} of equivariant coherent sheaves on an algebraic scheme X with action of a linear algebraic group G, via Quillen's Q-construction; thus, by definition,

K i G ( X ) = π i ( B + Coh G ( X ) ) . {\displaystyle K_{i}^{G}(X)=\pi _{i}(B^{+}\operatorname {Coh} ^{G}(X)).}

In particular, K 0 G ( C ) {\displaystyle K_{0}^{G}(C)} is the Grothendieck group of Coh G ( X ) {\displaystyle \operatorname {Coh} ^{G}(X)} . The theory was developed by R. W. Thomason in 1980s. Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem.

Equivalently, K i G ( X ) {\displaystyle K_{i}^{G}(X)} may be defined as the K i {\displaystyle K_{i}} of the category of coherent sheaves on the quotient stack [ X / G ] {\displaystyle } . (Hence, the equivariant K-theory is a specific case of the K-theory of a stack.)

A version of the Lefschetz fixed-point theorem holds in the setting of equivariant (algebraic) K-theory.

Fundamental theorems

Let X be an equivariant algebraic scheme.

Localization theorem — Given a closed immersion Z X {\displaystyle Z\hookrightarrow X} of equivariant algebraic schemes and an open immersion Z U X {\displaystyle Z-U\hookrightarrow X} , there is a long exact sequence of groups

K i G ( Z ) K i G ( X ) K i G ( U ) K i 1 G ( Z ) {\displaystyle \cdots \to K_{i}^{G}(Z)\to K_{i}^{G}(X)\to K_{i}^{G}(U)\to K_{i-1}^{G}(Z)\to \cdots }

Examples

One of the fundamental examples of equivariant K-theory groups are the equivariant K-groups of G {\displaystyle G} -equivariant coherent sheaves on a points, so K i G ( ) {\displaystyle K_{i}^{G}(*)} . Since Coh G ( ) {\displaystyle {\text{Coh}}^{G}(*)} is equivalent to the category Rep ( G ) {\displaystyle {\text{Rep}}(G)} of finite-dimensional representations of G {\displaystyle G} . Then, the Grothendieck group of Rep ( G ) {\displaystyle {\text{Rep}}(G)} , denoted R ( G ) {\displaystyle R(G)} is K 0 G ( ) {\displaystyle K_{0}^{G}(*)} .

Torus ring

Given an algebraic torus T G m k {\displaystyle \mathbb {T} \cong \mathbb {G} _{m}^{k}} a finite-dimensional representation V {\displaystyle V} is given by a direct sum of 1 {\displaystyle 1} -dimensional T {\displaystyle \mathbb {T} } -modules called the weights of V {\displaystyle V} . There is an explicit isomorphism between K T {\displaystyle K_{\mathbb {T} }} and Z [ t 1 , , t k ] {\displaystyle \mathbb {Z} } given by sending [ V ] {\displaystyle } to its associated character.

See also

References

  1. Charles A. Weibel, Robert W. Thomason (1952–1995).
  2. Adem, Alejandro; Ruan, Yongbin (June 2003). "Twisted Orbifold K-Theory". Communications in Mathematical Physics. 237 (3): 533–556. arXiv:math/0107168. Bibcode:2003CMaPh.237..533A. doi:10.1007/s00220-003-0849-x. ISSN 0010-3616. S2CID 12059533.
  3. Krishna, Amalendu; Ravi, Charanya (2017-08-02). "Algebraic K-theory of quotient stacks". arXiv:1509.05147 .
  4. Baum, Fulton & Quart 1979
  5. Chriss, Neil; Ginzburg, Neil. Representation theory and complex geometry. pp. 243–244.
  6. For G m {\displaystyle \mathbb {G} _{m}} there is a map f : G m G m {\displaystyle f:\mathbb {G} _{m}\to \mathbb {G} _{m}} sending t t k {\displaystyle t\mapsto t^{k}} . Since G m A 1 {\displaystyle \mathbb {G} _{m}\subset \mathbb {A} ^{1}} there is an induced representation f ^ : G m G L ( A 1 ) {\displaystyle {\hat {f}}:\mathbb {G} _{m}\to GL(\mathbb {A} ^{1})} of weight k {\displaystyle k} . See Algebraic torus for more info.
  7. Okounkov, Andrei (2017-01-03). "Lectures on K-theoretic computations in enumerative geometry". p. 13. arXiv:1512.07363 .
  • N. Chris and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 1997.
  • Baum, Paul; Fulton, William; Quart, George (1979). "Lefschetz-riemann-roch for singular varieties". Acta Mathematica. 143: 193–211. doi:10.1007/BF02392092.
  • Thomason, R.W.:Algebraic K-theory of group scheme actions. In: Browder, W. (ed.) Algebraic topology and algebraic K-theory. (Ann. Math. Stud., vol. 113, pp. 539 563) Princeton: Princeton University Press 1987
  • Thomason, R.W.: Lefschetz–Riemann–Roch theorem and coherent trace formula. Invent. Math. 85, 515–543 (1986)
  • Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y., Ribet, K.A. (eds.) The Grothendieck Festschrift, vol. III. (Prog. Math. vol. 88, pp. 247 435) Boston Basel Berlin: Birkhfiuser 1990
  • Thomason, R.W., Une formule de Lefschetz en K-théorie équivariante algébrique, Duke Math. J. 68 (1992), 447–462.

Further reading

Category: