(Redirected from Euler's function )
Mathematical function
Domain coloring plot of ϕ on the complex plane
For other uses, see List of topics named after Leonhard Euler .Not to be confused with Euler's totient function .
In mathematics , the Euler function is given by
ϕ
(
q
)
=
∏
k
=
1
∞
(
1
−
q
k
)
,
|
q
|
<
1.
{\displaystyle \phi (q)=\prod _{k=1}^{\infty }(1-q^{k}),\quad |q|<1.}
Named after Leonhard Euler , it is a model example of a q -series and provides the prototypical example of a relation between combinatorics and complex analysis .
Properties
The coefficient
p
(
k
)
{\displaystyle p(k)}
in the formal power series expansion for
1
/
ϕ
(
q
)
{\displaystyle 1/\phi (q)}
gives the number of partitions of k . That is,
1
ϕ
(
q
)
=
∑
k
=
0
∞
p
(
k
)
q
k
{\displaystyle {\frac {1}{\phi (q)}}=\sum _{k=0}^{\infty }p(k)q^{k}}
where
p
{\displaystyle p}
is the partition function .
The Euler identity , also known as the Pentagonal number theorem , is
ϕ
(
q
)
=
∑
n
=
−
∞
∞
(
−
1
)
n
q
(
3
n
2
−
n
)
/
2
.
{\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(3n^{2}-n)/2}.}
(
3
n
2
−
n
)
/
2
{\displaystyle (3n^{2}-n)/2}
is a pentagonal number .
The Euler function is related to the Dedekind eta function as
ϕ
(
e
2
π
i
τ
)
=
e
−
π
i
τ
/
12
η
(
τ
)
.
{\displaystyle \phi (e^{2\pi i\tau })=e^{-\pi i\tau /12}\eta (\tau ).}
The Euler function may be expressed as a q -Pochhammer symbol :
ϕ
(
q
)
=
(
q
;
q
)
∞
.
{\displaystyle \phi (q)=(q;q)_{\infty }.}
The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding
ln
(
ϕ
(
q
)
)
=
−
∑
n
=
1
∞
1
n
q
n
1
−
q
n
,
{\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {1}{n}}\,{\frac {q^{n}}{1-q^{n}}},}
which is a Lambert series with coefficients -1/n . The logarithm of the Euler function may therefore be expressed as
ln
(
ϕ
(
q
)
)
=
∑
n
=
1
∞
b
n
q
n
{\displaystyle \ln(\phi (q))=\sum _{n=1}^{\infty }b_{n}q^{n}}
where
b
n
=
−
∑
d
|
n
1
d
=
{\displaystyle b_{n}=-\sum _{d|n}{\frac {1}{d}}=}
- (see OEIS A000203 )
On account of the identity
σ
(
n
)
=
∑
d
|
n
d
=
∑
d
|
n
n
d
{\displaystyle \sigma (n)=\sum _{d|n}d=\sum _{d|n}{\frac {n}{d}}}
, where
σ
(
n
)
{\displaystyle \sigma (n)}
is the sum-of-divisors function , this may also be written as
ln
(
ϕ
(
q
)
)
=
−
∑
n
=
1
∞
σ
(
n
)
n
q
n
{\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {\sigma (n)}{n}}\ q^{n}}
.
Also if
a
,
b
∈
R
+
{\displaystyle a,b\in \mathbb {R} ^{+}}
and
a
b
=
π
2
{\displaystyle ab=\pi ^{2}}
, then
a
1
/
4
e
−
a
/
12
ϕ
(
e
−
2
a
)
=
b
1
/
4
e
−
b
/
12
ϕ
(
e
−
2
b
)
.
{\displaystyle a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).}
Special values
The next identities come from Ramanujan 's Notebooks:
ϕ
(
e
−
π
)
=
e
π
/
24
Γ
(
1
4
)
2
7
/
8
π
3
/
4
{\displaystyle \phi (e^{-\pi })={\frac {e^{\pi /24}\Gamma \left({\frac {1}{4}}\right)}{2^{7/8}\pi ^{3/4}}}}
ϕ
(
e
−
2
π
)
=
e
π
/
12
Γ
(
1
4
)
2
π
3
/
4
{\displaystyle \phi (e^{-2\pi })={\frac {e^{\pi /12}\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{3/4}}}}
ϕ
(
e
−
4
π
)
=
e
π
/
6
Γ
(
1
4
)
2
11
/
8
π
3
/
4
{\displaystyle \phi (e^{-4\pi })={\frac {e^{\pi /6}\Gamma \left({\frac {1}{4}}\right)}{2^{{11}/8}\pi ^{3/4}}}}
ϕ
(
e
−
8
π
)
=
e
π
/
3
Γ
(
1
4
)
2
29
/
16
π
3
/
4
(
2
−
1
)
1
/
4
{\displaystyle \phi (e^{-8\pi })={\frac {e^{\pi /3}\Gamma \left({\frac {1}{4}}\right)}{2^{29/16}\pi ^{3/4}}}({\sqrt {2}}-1)^{1/4}}
Using the Pentagonal number theorem , exchanging sum and integral , and then invoking complex-analytic methods, one derives
∫
0
1
ϕ
(
q
)
d
q
=
8
3
23
π
sinh
(
23
π
6
)
2
cosh
(
23
π
3
)
−
1
.
{\displaystyle \int _{0}^{1}\phi (q)\,\mathrm {d} q={\frac {8{\sqrt {\frac {3}{23}}}\pi \sinh \left({\frac {{\sqrt {23}}\pi }{6}}\right)}{2\cosh \left({\frac {{\sqrt {23}}\pi }{3}}\right)-1}}.}
References
Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V . Springer. ISBN 978-1-4612-7221-2 . p. 326
Sloane, N. J. A. (ed.). "Sequence A258232" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑