Misplaced Pages

Euler function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Euler's function) Mathematical function
Domain coloring plot of ϕ on the complex plane
For other uses, see List of topics named after Leonhard Euler.Not to be confused with Euler's totient function.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (July 2018) (Learn how and when to remove this message)

In mathematics, the Euler function is given by

ϕ ( q ) = k = 1 ( 1 q k ) , | q | < 1. {\displaystyle \phi (q)=\prod _{k=1}^{\infty }(1-q^{k}),\quad |q|<1.}

Named after Leonhard Euler, it is a model example of a q-series and provides the prototypical example of a relation between combinatorics and complex analysis.

Properties

The coefficient p ( k ) {\displaystyle p(k)} in the formal power series expansion for 1 / ϕ ( q ) {\displaystyle 1/\phi (q)} gives the number of partitions of k. That is,

1 ϕ ( q ) = k = 0 p ( k ) q k {\displaystyle {\frac {1}{\phi (q)}}=\sum _{k=0}^{\infty }p(k)q^{k}}

where p {\displaystyle p} is the partition function.

The Euler identity, also known as the Pentagonal number theorem, is

ϕ ( q ) = n = ( 1 ) n q ( 3 n 2 n ) / 2 . {\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(3n^{2}-n)/2}.}

( 3 n 2 n ) / 2 {\displaystyle (3n^{2}-n)/2} is a pentagonal number.

The Euler function is related to the Dedekind eta function as

ϕ ( e 2 π i τ ) = e π i τ / 12 η ( τ ) . {\displaystyle \phi (e^{2\pi i\tau })=e^{-\pi i\tau /12}\eta (\tau ).}

The Euler function may be expressed as a q-Pochhammer symbol:

ϕ ( q ) = ( q ; q ) . {\displaystyle \phi (q)=(q;q)_{\infty }.}

The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding

ln ( ϕ ( q ) ) = n = 1 1 n q n 1 q n , {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {1}{n}}\,{\frac {q^{n}}{1-q^{n}}},}

which is a Lambert series with coefficients -1/n. The logarithm of the Euler function may therefore be expressed as

ln ( ϕ ( q ) ) = n = 1 b n q n {\displaystyle \ln(\phi (q))=\sum _{n=1}^{\infty }b_{n}q^{n}}

where b n = d | n 1 d = {\displaystyle b_{n}=-\sum _{d|n}{\frac {1}{d}}=} - (see OEIS A000203)

On account of the identity σ ( n ) = d | n d = d | n n d {\displaystyle \sigma (n)=\sum _{d|n}d=\sum _{d|n}{\frac {n}{d}}} , where σ ( n ) {\displaystyle \sigma (n)} is the sum-of-divisors function, this may also be written as

ln ( ϕ ( q ) ) = n = 1 σ ( n ) n   q n {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {\sigma (n)}{n}}\ q^{n}} .

Also if a , b R + {\displaystyle a,b\in \mathbb {R} ^{+}} and a b = π 2 {\displaystyle ab=\pi ^{2}} , then

a 1 / 4 e a / 12 ϕ ( e 2 a ) = b 1 / 4 e b / 12 ϕ ( e 2 b ) . {\displaystyle a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).}

Special values

The next identities come from Ramanujan's Notebooks:

ϕ ( e π ) = e π / 24 Γ ( 1 4 ) 2 7 / 8 π 3 / 4 {\displaystyle \phi (e^{-\pi })={\frac {e^{\pi /24}\Gamma \left({\frac {1}{4}}\right)}{2^{7/8}\pi ^{3/4}}}}
ϕ ( e 2 π ) = e π / 12 Γ ( 1 4 ) 2 π 3 / 4 {\displaystyle \phi (e^{-2\pi })={\frac {e^{\pi /12}\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{3/4}}}}
ϕ ( e 4 π ) = e π / 6 Γ ( 1 4 ) 2 11 / 8 π 3 / 4 {\displaystyle \phi (e^{-4\pi })={\frac {e^{\pi /6}\Gamma \left({\frac {1}{4}}\right)}{2^{{11}/8}\pi ^{3/4}}}}
ϕ ( e 8 π ) = e π / 3 Γ ( 1 4 ) 2 29 / 16 π 3 / 4 ( 2 1 ) 1 / 4 {\displaystyle \phi (e^{-8\pi })={\frac {e^{\pi /3}\Gamma \left({\frac {1}{4}}\right)}{2^{29/16}\pi ^{3/4}}}({\sqrt {2}}-1)^{1/4}}

Using the Pentagonal number theorem, exchanging sum and integral, and then invoking complex-analytic methods, one derives

0 1 ϕ ( q ) d q = 8 3 23 π sinh ( 23 π 6 ) 2 cosh ( 23 π 3 ) 1 . {\displaystyle \int _{0}^{1}\phi (q)\,\mathrm {d} q={\frac {8{\sqrt {\frac {3}{23}}}\pi \sinh \left({\frac {{\sqrt {23}}\pi }{6}}\right)}{2\cosh \left({\frac {{\sqrt {23}}\pi }{3}}\right)-1}}.}

References

  1. Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
  2. Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326
  3. Sloane, N. J. A. (ed.). "Sequence A258232". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Leonhard Euler
Categories: