Misplaced Pages

Euler–Boole summation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Euler-Boole summation) Summation method for some divergent series

Euler–Boole summation is a method for summing alternating series. The concept is named after Leonhard Euler and George Boole. Boole published this summation method, using Euler's polynomials, but the method itself was likely already known to Euler.

Euler's polynomials are defined by

2 e x t e t + 1 = n = 0 E n ( x ) t n n ! . {\displaystyle \displaystyle {\frac {2e^{xt}}{e^{t}+1}}=\sum _{n=0}^{\infty }E_{n}(x){\frac {t^{n}}{n!}}.}

The periodic Euler functions modify these by a sign change depending on the parity of the integer part of x {\displaystyle x} :

E ~ n ( x + 1 ) = E ~ n ( x )  and  E ~ n ( x ) = E n ( x )  for  0 < x < 1. {\displaystyle \displaystyle {\widetilde {E}}_{n}(x+1)=-{\widetilde {E}}_{n}(x){\text{ and }}{\widetilde {E}}_{n}(x)=E_{n}(x){\text{ for }}0<x<1.}

The Euler–Boole formula to sum alternating series is

j = a n 1 ( 1 ) j f ( j + h ) = 1 2 k = 0 m 1 E k ( h ) k ! ( ( 1 ) n 1 f ( k ) ( n ) + ( 1 ) a f ( k ) ( a ) ) + 1 2 ( m 1 ) ! a n f ( m ) ( x ) E ~ m 1 ( h x ) d x , {\displaystyle {\begin{aligned}\displaystyle \sum _{j=a}^{n-1}(-1)^{j}f(j+h)={}&{\frac {1}{2}}\sum _{k=0}^{m-1}{\frac {E_{k}(h)}{k!}}\left((-1)^{n-1}f^{(k)}(n)+(-1)^{a}f^{(k)}(a)\right)\\&{}+{\frac {1}{2(m-1)!}}\int _{a}^{n}f^{(m)}(x){\widetilde {E}}_{m-1}(h-x)\,dx,\end{aligned}}}

where a , m , n N , a < n , h [ 0 , 1 ] {\displaystyle a,m,n\in \mathbb {N} ,a<n,h\in } and f ( k ) {\displaystyle f^{(k)}} is the kth derivative.

References

  1. ^ Borwein, Jonathan M.; Calkin, Neil J.; Manna, Dante (2009), "Euler–Boole summation revisited", American Mathematical Monthly, 116 (5): 387–412, doi:10.4169/193009709X470290, hdl:1959.13/940107, JSTOR 40391116, MR 2510837
  2. ^ Temme, Nico M. (1996), Special Functions: An Introduction to the Classical Functions of Mathematical Physics, Wiley-Interscience Publications, New York: John Wiley & Sons, Inc., pp. 17–18, doi:10.1002/9781118032572, ISBN 0-471-11313-1, MR 1376370


Stub icon

This mathematics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: