Misplaced Pages

Excess-3

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Excess-3 code) Variation to BCD-code where three (11) is added to a binary representation "XS-3" redirects here. For the experimental aircraft, see Douglas XS-3 Stiletto. "Shifted binary" redirects here. For the general concept, see Offset binary. For binary shifts, see Bit shifting.

Stibitz code
Digits4
Tracks4
Digit values8  4 −2 −1
Weight(s)1..3
ContinuityNo
CyclicNo
Minimum distance1
Maximum distance4
Redundancy0.7
Lexicography1
Complement9

Excess-3, 3-excess or 10-excess-3 binary code (often abbreviated as XS-3, 3XS or X3), shifted binary or Stibitz code (after George Stibitz, who built a relay-based adding machine in 1937) is a self-complementary binary-coded decimal (BCD) code and numeral system. It is a biased representation. Excess-3 code was used on some older computers as well as in cash registers and hand-held portable electronic calculators of the 1970s, among other uses.

Representation

Biased codes are a way to represent values with a balanced number of positive and negative numbers using a pre-specified number N as a biasing value. Biased codes (and Gray codes) are non-weighted codes. In excess-3 code, numbers are represented as decimal digits, and each digit is represented by four bits as the digit value plus 3 (the "excess" amount):

  • The smallest binary number represents the smallest value (0 − excess).
  • The greatest binary number represents the largest value (2 − excess − 1).
Excess-3, and Stibitz code
Decimal Excess-3 Stibitz BCD 8-4-2-1 Binary 3-of-6 CCITT
extension
4-of-8 Hamming
extension
0 0011 0011 0000 0000 10 0011
1 0100 0100 0001 0001 11 1011
2 0101 0101 0010 0010 10 0101
3 0110 0110 0011 0011 10 0110
4 0111 0111 0100 0100 00 1000
5 1000 1000 0101 0101 11 0111
6 1001 1001 0110 0110 10 1001
7 1010 1010 0111 0111 10 1010
8 1011 1011 1000 1000 00 0100
9 1100 1100 1001 1001 10 1100

To encode a number such as 127, one simply encodes each of the decimal digits as above, giving (0100, 0101, 1010).

Excess-3 arithmetic uses different algorithms than normal non-biased BCD or binary positional system numbers. After adding two excess-3 digits, the raw sum is excess-6. For instance, after adding 1 (0100 in excess-3) and 2 (0101 in excess-3), the sum looks like 6 (1001 in excess-3) instead of 3 (0110 in excess-3). To correct this problem, after adding two digits, it is necessary to remove the extra bias by subtracting binary 0011 (decimal 3 in unbiased binary) if the resulting digit is less than decimal 10, or subtracting binary 1101 (decimal 13 in unbiased binary) if an overflow (carry) has occurred. (In 4-bit binary, subtracting binary 1101 is equivalent to adding 0011 and vice versa.)


Advantage

The primary advantage of excess-3 coding over non-biased coding is that a decimal number can be nines' complemented (for subtraction) as easily as a binary number can be ones' complemented: just by inverting all bits. Also, when the sum of two excess-3 digits is greater than 9, the carry bit of a 4-bit adder will be set high. This works because, after adding two digits, an "excess" value of 6 results in the sum. Because a 4-bit integer can only hold values 0 to 15, an excess of 6 means that any sum over 9 will overflow (produce a carry-out).

Another advantage is that the codes 0000 and 1111 are not used for any digit. A fault in a memory or basic transmission line may result in these codes. It is also more difficult to write the zero pattern to magnetic media.

Example

BCD 8-4-2-1 to excess-3 converter example in VHDL:

entity bcd8421xs3 is
  port (
    a   : in    std_logic;
    b   : in    std_logic;
    c   : in    std_logic;
    d   : in    std_logic;
    an  : buffer std_logic;
    bn  : buffer std_logic;
    cn  : buffer std_logic;
    dn  : buffer std_logic;
    w   : out   std_logic;
    x   : out   std_logic;
    y   : out   std_logic;
    z   : out   std_logic
  );
end entity bcd8421xs3;
architecture dataflow of bcd8421xs3 is
begin
    an  <=  not a;
    bn  <=  not b;
    cn  <=  not c;
    dn  <=  not d;
    w   <=  (an and b  and d ) or (a  and bn and cn)
         or (an and b  and c  and dn);
    x   <=  (an and bn and d ) or (an and bn and c  and dn)
         or (an and b  and cn and dn) or (a  and bn and cn and d);
    y   <=  (an and cn and dn) or (an and c  and d )
         or (a  and bn and cn and dn);
    z   <=  (an and dn) or (a  and bn and cn and dn);
end architecture dataflow; -- of bcd8421xs3

Extensions

3-of-6 extension
Digits6
Tracks6
Weight(s)3
ContinuityNo
CyclicNo
Minimum distance2
Maximum distance6
Lexicography1
Complement(9)
4-of-8 extension
Digits8
Tracks8
Weight(s)4
ContinuityNo
CyclicNo
Minimum distance4
Maximum distance8
Lexicography1
Complement9
  • 3-of-6 code extension: The excess-3 code is sometimes also used for data transfer, then often expanded to a 6-bit code per CCITT GT 43 No. 1, where 3 out of 6 bits are set.
  • 4-of-8 code extension: As an alternative to the IBM transceiver code (which is a 4-of-8 code with a Hamming distance of 2), it is also possible to define a 4-of-8 excess-3 code extension achieving a Hamming distance of 4, if only denary digits are to be transferred.

See also

References

  1. ^ Steinbuch, Karl W., ed. (1962). Written at Karlsruhe, Germany. Taschenbuch der Nachrichtenverarbeitung (in German) (1 ed.). Berlin / Göttingen / New York: Springer-Verlag OHG. pp. 71–73, 1081–1082. LCCN 62-14511.
  2. ^ Steinbuch, Karl W.; Weber, Wolfgang; Heinemann, Traute, eds. (1974) . Taschenbuch der Informatik – Band II – Struktur und Programmierung von EDV-Systemen (in German). Vol. 2 (3 ed.). Berlin, Germany: Springer Verlag. pp. 98–100. ISBN 3-540-06241-6. LCCN 73-80607. {{cite book}}: |work= ignored (help)
  3. Richards, Richard Kohler (1955). Arithmetic Operations in Digital Computers. New York, USA: van Nostrand. p. 182.
  4. Kautz, William H. (June 1954). "Optimized Data Encoding for Digital Computers". Convention Record of the I.R.E. 1954 National Convention, Part 4: Electronic Computers and Information Technology. 2. Stanford Research Institute, Stanford, California, USA: The Institute of Radio Engineers, Inc.: 47–57. Session 19: Information Theory III - Speed and Computation. Retrieved 2020-05-22. (11 pages)
  5. Schmid, Hermann (1974). Decimal Computation (1 ed.). Binghamton, New York, USA: John Wiley & Sons, Inc. p. 11. ISBN 0-471-76180-X. Retrieved 2016-01-03.
  6. Schmid, Hermann (1983) . Decimal Computation (1 (reprint) ed.). Malabar, Florida, USA: Robert E. Krieger Publishing Company. p. 11. ISBN 0-89874-318-4. Retrieved 2016-01-03. (NB. At least some batches of this reprint edition were misprints with defective pages 115–146.)
  7. Stibitz, George Robert; Larrivee, Jules A. (1957). Written at Underhill, Vermont, USA. Mathematics and Computers (1 ed.). New York, USA / Toronto, Canada / London, UK: McGraw-Hill Book Company, Inc. p. 105. LCCN 56-10331. (10+228 pages)
  8. Dokter, Folkert; Steinhauer, Jürgen (1973-06-18). Digital Electronics. Philips Technical Library (PTL) / Macmillan Education (Reprint of 1st English ed.). Eindhoven, Netherlands: The Macmillan Press Ltd. / N. V. Philips' Gloeilampenfabrieken. pp. 42, 44. doi:10.1007/978-1-349-01417-0. ISBN 978-1-349-01419-4. SBN 333-13360-9. Retrieved 2018-07-01. (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.)
  9. Dokter, Folkert; Steinhauer, Jürgen (1975) . Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik. Philips Fachbücher (in German). Vol. I (improved and extended 5th ed.). Hamburg, Germany: Deutsche Philips GmbH. pp. 48, 51, 53, 58, 61, 73. ISBN 3-87145-272-6. (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.)
  10. Stibitz, George Robert (1954-02-09) . "Complex Computer". Patent US2668661A. Retrieved 2020-05-24. (102 pages)
  11. ^ Mietke, Detlef (2017) . "Binäre Codices". Informations- und Kommunikationstechnik (in German). Berlin, Germany. Exzeß-3-Code mit Additions- und Subtraktionsverfahren. Archived from the original on 2017-04-25. Retrieved 2017-04-25.
  12. Ritchie, David (1986). The Computer Pioneers. New York, USA: Simon and Schuster. p. 35. ISBN 067152397X.
  13. ^ Comité Consultatif International Téléphonique et Télégraphique (CCITT), Groupe de Travail 43 (1959-06-03). Contribution No. 1. CCITT, GT 43 No. 1.{{cite book}}: CS1 maint: numeric names: authors list (link)
  14. Hayes, John P. (1978). Computer Architecture and Organization. McGraw-Hill International Book Company. p. 156. ISBN 0-07-027363-4.
  15. Bashe, Charles J.; Jackson, Peter Ward; Mussell, Howard A.; Winger, Wayne David (January 1956). "The Design of the IBM Type 702 System". Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 74 (6): 695–704. doi:10.1109/TCE.1956.6372444. S2CID 51666209. Paper No. 55-719.
  16. IBM (July 1957). 65 Data Transceiver / 66 Printing Data Receiver.
Categories: