Misplaced Pages

Reduct

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Expansion (model theory)) Omission of operations and relations of a structure This article is about a relation on algebraic structures. For reducts in abstract rewriting, see Confluence (abstract rewriting).

In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operations and relations of that structure. The opposite of "reduct" is "expansion".

Definition

Let A be an algebraic structure (in the sense of universal algebra) or a structure in the sense of model theory, organized as a set X together with an indexed family of operations and relations φi on that set, with index set I. Then the reduct of A defined by a subset J of I is the structure consisting of the set X and J-indexed family of operations and relations whose j-th operation or relation for jJ is the j-th operation or relation of A. That is, this reduct is the structure A with the omission of those operations and relations φi for which i is not in J.

A structure A is an expansion of B just when B is a reduct of A. That is, reduct and expansion are mutual converses.

Examples

The monoid (Z, +, 0) of integers under addition is a reduct of the group (Z, +, −, 0) of integers under addition and negation, obtained by omitting negation. By contrast, the monoid (N, +, 0) of natural numbers under addition is not the reduct of any group.

Conversely the group (Z, +, −, 0) is the expansion of the monoid (Z, +, 0), expanding it with the operation of negation.

References

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Categories: