Misplaced Pages

F-space

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from F space) For F-spaces in general topology, see sub-Stonean space. Topological vector space with a complete translation-invariant metric

In functional analysis, an F-space is a vector space X {\displaystyle X} over the real or complex numbers together with a metric d : X × X R {\displaystyle d:X\times X\to \mathbb {R} } such that

  1. Scalar multiplication in X {\displaystyle X} is continuous with respect to d {\displaystyle d} and the standard metric on R {\displaystyle \mathbb {R} } or C . {\displaystyle \mathbb {C} .}
  2. Addition in X {\displaystyle X} is continuous with respect to d . {\displaystyle d.}
  3. The metric is translation-invariant; that is, d ( x + a , y + a ) = d ( x , y ) {\displaystyle d(x+a,y+a)=d(x,y)} for all x , y , a X . {\displaystyle x,y,a\in X.}
  4. The metric space ( X , d ) {\displaystyle (X,d)} is complete.

The operation x x := d ( 0 , x ) {\displaystyle x\mapsto \|x\|:=d(0,x)} is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm. Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm.

Some authors use the term Fréchet space rather than F-space, but usually the term "Fréchet space" is reserved for locally convex F-spaces. Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metrizable topological vector space. The metric may or may not necessarily be part of the structure on an F-space; many authors only require that such a space be metrizable in a manner that satisfies the above properties.

Examples

All Banach spaces and Fréchet spaces are F-spaces. In particular, a Banach space is an F-space with an additional requirement that d ( a x , 0 ) = | a | d ( x , 0 ) . {\displaystyle d(ax,0)=|a|d(x,0).}

The L spaces can be made into F-spaces for all p 0 {\displaystyle p\geq 0} and for p 1 {\displaystyle p\geq 1} they can be made into locally convex and thus Fréchet spaces and even Banach spaces.

Example 1

L 1 2 [ 0 , 1 ] {\displaystyle L^{\frac {1}{2}}} is an F-space. It admits no continuous seminorms and no continuous linear functionals — it has trivial dual space.

Example 2

Let W p ( D ) {\displaystyle W_{p}(\mathbb {D} )} be the space of all complex valued Taylor series f ( z ) = n 0 a n z n {\displaystyle f(z)=\sum _{n\geq 0}a_{n}z^{n}} on the unit disc D {\displaystyle \mathbb {D} } such that n | a n | p < {\displaystyle \sum _{n}\left|a_{n}\right|^{p}<\infty } then for 0 < p < 1 , {\displaystyle 0<p<1,} W p ( D ) {\displaystyle W_{p}(\mathbb {D} )} are F-spaces under the p-norm: f p = n | a n | p ( 0 < p < 1 ) . {\displaystyle \|f\|_{p}=\sum _{n}\left|a_{n}\right|^{p}\qquad (0<p<1).}

In fact, W p {\displaystyle W_{p}} is a quasi-Banach algebra. Moreover, for any ζ {\displaystyle \zeta } with | ζ | 1 {\displaystyle |\zeta |\leq 1} the map f f ( ζ ) {\displaystyle f\mapsto f(\zeta )} is a bounded linear (multiplicative functional) on W p ( D ) . {\displaystyle W_{p}(\mathbb {D} ).}

Sufficient conditions

Theorem (Klee (1952)) — Let d {\displaystyle d} be any metric on a vector space X {\displaystyle X} such that the topology τ {\displaystyle \tau } induced by d {\displaystyle d} on X {\displaystyle X} makes ( X , τ ) {\displaystyle (X,\tau )} into a topological vector space. If ( X , d ) {\displaystyle (X,d)} is a complete metric space then ( X , τ ) {\displaystyle (X,\tau )} is a complete topological vector space.

Related properties

The open mapping theorem implies that if τ  and  τ 2 {\displaystyle \tau {\text{ and }}\tau _{2}} are topologies on X {\displaystyle X} that make both ( X , τ ) {\displaystyle (X,\tau )} and ( X , τ 2 ) {\displaystyle \left(X,\tau _{2}\right)} into complete metrizable topological vector spaces (for example, Banach or Fréchet spaces) and if one topology is finer or coarser than the other then they must be equal (that is, if τ τ 2  or  τ 2 τ  then  τ = τ 2 {\displaystyle \tau \subseteq \tau _{2}{\text{ or }}\tau _{2}\subseteq \tau {\text{ then }}\tau =\tau _{2}} ).

See also

References

  1. Dunford N., Schwartz J.T. (1958). Linear operators. Part I: general theory. Interscience publishers, inc., New York. p. 59
  2. Schaefer & Wolff 1999, p. 35.
  3. Klee, V. L. (1952). "Invariant metrics in groups (solution of a problem of Banach)" (PDF). Proc. Amer. Math. Soc. 3 (3): 484–487. doi:10.1090/s0002-9939-1952-0047250-4.
  4. Trèves 2006, pp. 166–173.
  5. ^ Husain & Khaleelulla 1978, p. 14.
  6. Husain & Khaleelulla 1978, p. 15.

Notes

  1. Not assume to be translation-invariant.

Sources

Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Topological vector spaces (TVSs)
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Categories: