Misplaced Pages

Favard operator

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Functional analysis operator

In functional analysis, a branch of mathematics, the Favard operators are defined by:

[ F n ( f ) ] ( x ) = 1 n π k = exp ( n ( k n x ) 2 ) f ( k n ) {\displaystyle (x)={\frac {1}{\sqrt {n\pi }}}\sum _{k=-\infty }^{\infty }{\exp {\left({-n{\left({{\frac {k}{n}}-x}\right)}^{2}}\right)}f\left({\frac {k}{n}}\right)}}

where x R {\displaystyle x\in \mathbb {R} } , n N {\displaystyle n\in \mathbb {N} } . They are named after Jean Favard.

Generalizations

A common generalization is:

[ F n ( f ) ] ( x ) = 1 n γ n 2 π k = exp ( 1 2 γ n 2 ( k n x ) 2 ) f ( k n ) {\displaystyle (x)={\frac {1}{n\gamma _{n}{\sqrt {2\pi }}}}\sum _{k=-\infty }^{\infty }{\exp {\left({{\frac {-1}{2\gamma _{n}^{2}}}{\left({{\frac {k}{n}}-x}\right)}^{2}}\right)}f\left({\frac {k}{n}}\right)}}

where ( γ n ) n = 1 {\displaystyle (\gamma _{n})_{n=1}^{\infty }} is a positive sequence that converges to 0. This reduces to the classical Favard operators when γ n 2 = 1 / ( 2 n ) {\displaystyle \gamma _{n}^{2}=1/(2n)} .

References

  • Favard, Jean (1944). "Sur les multiplicateurs d'interpolation". Journal de Mathématiques Pures et Appliquées (in French). 23 (9): 219–247. This paper also discussed Szász–Mirakyan operators, which is why Favard is sometimes credited with their development (e.g. Favard–Szász operators).

Footnotes

  1. Nowak, Grzegorz; Aneta Sikorska-Nowak (14 November 2007). "On the generalized Favard–Kantorovich and Favard–Durrmeyer operators in exponential function spaces". Journal of Inequalities and Applications. 2007: 075142. doi:10.1155/2007/75142.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: