Misplaced Pages

Ferrers function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions. They are named after Norman Macleod Ferrers.

Definitions

When the order μ and the degree ν are real and x ∈ (-1,1)

Ferrers function of the first kind
P v μ ( x ) = ( 1 + x 1 x ) μ / 2 2 F 1 ( v + 1 , v ; 1 μ ; 1 / 2 x / 2 ) Γ ( 1 μ ) {\displaystyle P_{v}^{\mu }(x)=\left({\frac {1+x}{1-x}}\right)^{\mu /2}\cdot {\frac {{}_{2}F_{1}(v+1,-v;1-\mu ;1/2-x/2)}{\Gamma (1-\mu )}}}
Ferrers function of the second kind
Q v μ ( x ) = π 2 sin ( μ π ) ( cos ( μ π ) ( 1 + x 1 x ) μ 2 2 F 1 ( v + 1 , v ; 1 μ ; 1 x 2 ) Γ ( 1 μ ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) ( 1 x 1 + x ) μ 2 2 F 1 ( v + 1 , v ; 1 + μ ; 1 x 2 ) Γ ( 1 + μ ) ) {\displaystyle Q_{v}^{\mu }(x)={\frac {\pi }{2\sin(\mu \pi )}}\left(\cos(\mu \pi )\left({\frac {1+x}{1-x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1-\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1-\mu )}}-{\frac {\Gamma (\nu +\mu +1)}{\Gamma (\nu -\mu +1)}}\left({\frac {1-x}{1+x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1+\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1+\mu )}}\right)}

See also

References

  1. Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Ferrers Function", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
Category: