In mathematics , Ferrers functions are certain special functions defined in terms of hypergeometric functions .
They are named after Norman Macleod Ferrers .
Definitions
When the order μ and the degree ν are real and x ∈ (-1,1)
Ferrers function of the first kind
P
v
μ
(
x
)
=
(
1
+
x
1
−
x
)
μ
/
2
⋅
2
F
1
(
v
+
1
,
−
v
;
1
−
μ
;
1
/
2
−
x
/
2
)
Γ
(
1
−
μ
)
{\displaystyle P_{v}^{\mu }(x)=\left({\frac {1+x}{1-x}}\right)^{\mu /2}\cdot {\frac {{}_{2}F_{1}(v+1,-v;1-\mu ;1/2-x/2)}{\Gamma (1-\mu )}}}
Ferrers function of the second kind
Q
v
μ
(
x
)
=
π
2
sin
(
μ
π
)
(
cos
(
μ
π
)
(
1
+
x
1
−
x
)
μ
2
2
F
1
(
v
+
1
,
−
v
;
1
−
μ
;
1
−
x
2
)
Γ
(
1
−
μ
)
−
Γ
(
ν
+
μ
+
1
)
Γ
(
ν
−
μ
+
1
)
(
1
−
x
1
+
x
)
μ
2
2
F
1
(
v
+
1
,
−
v
;
1
+
μ
;
1
−
x
2
)
Γ
(
1
+
μ
)
)
{\displaystyle Q_{v}^{\mu }(x)={\frac {\pi }{2\sin(\mu \pi )}}\left(\cos(\mu \pi )\left({\frac {1+x}{1-x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1-\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1-\mu )}}-{\frac {\Gamma (\nu +\mu +1)}{\Gamma (\nu -\mu +1)}}\left({\frac {1-x}{1+x}}\right)^{\frac {\mu }{2}}\,{\frac {{}_{2}F_{1}\left(v+1,-v;1+\mu ;{\frac {1-x}{2}}\right)}{\Gamma (1+\mu )}}\right)}
See also
References
Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Ferrers Function" , NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑