In the theory of stochastic processes, filtering describes the problem of determining the state of a system from an incomplete and potentially noisy set of observations. While originally motivated by problems in engineering, filtering found applications in many fields from signal processing to finance.
The problem of optimal non-linear filtering (even for the non-stationary case) was solved by Ruslan L. Stratonovich (1959, 1960), see also Harold J. Kushner's work and Moshe Zakai's, who introduced a simplified dynamics for the unnormalized conditional law of the filter known as the Zakai equation. The solution, however, is infinite-dimensional in the general case. Certain approximations and special cases are well understood: for example, the linear filters are optimal for Gaussian random variables, and are known as the Wiener filter and the Kalman-Bucy filter. More generally, as the solution is infinite dimensional, it requires finite dimensional approximations to be implemented in a computer with finite memory. A finite dimensional approximated nonlinear filter may be more based on heuristics, such as the extended Kalman filter or the assumed density filters, or more methodologically oriented such as for example the projection filters, some sub-families of which are shown to coincide with the Assumed Density Filters. Particle filters are another option to attack the infinite dimensional filtering problem and are based on sequential Monte Carlo methods.
In general, if the separation principle applies, then filtering also arises as part of the solution of an optimal control problem. For example, the Kalman filter is the estimation part of the optimal control solution to the linear-quadratic-Gaussian control problem.
The mathematical formalism
Consider a probability space (Ω, Σ, P) and suppose that the (random) state Yt in n-dimensional Euclidean space R of a system of interest at time t is a random variable Yt : Ω → R given by the solution to an Itō stochastic differential equation of the form
where B denotes standard p-dimensional Brownian motion, b : [0, +∞) × R → R is the drift field, and σ : [0, +∞) × R → R is the diffusion field. It is assumed that observations Ht in R (note that m and n may, in general, be unequal) are taken for each time t according to
Adopting the Itō interpretation of the stochastic differential and setting
this gives the following stochastic integral representation for the observations Zt:
where W denotes standard r-dimensional Brownian motion, independent of B and the initial condition Y0, and c : [0, +∞) × R → R and γ : [0, +∞) × R → R satisfy
for all t and x and some constant C.
The filtering problem is the following: given observations Zs for 0 ≤ s ≤ t, what is the best estimate Ŷt of the true state Yt of the system based on those observations?
By "based on those observations" it is meant that Ŷt is measurable with respect to the σ-algebra Gt generated by the observations Zs, 0 ≤ s ≤ t. Denote by K = K(Z, t) the collection of all R-valued random variables Y that are square-integrable and Gt-measurable:
By "best estimate", it is meant that Ŷt minimizes the mean-square distance between Yt and all candidates in K:
Basic result: orthogonal projection
The space K(Z, t) of candidates is a Hilbert space, and the general theory of Hilbert spaces implies that the solution Ŷt of the minimization problem (M) is given by
where PK(Z,t) denotes the orthogonal projection of L(Ω, Σ, P; R) onto the linear subspace K(Z, t) = L(Ω, Gt, P; R). Furthermore, it is a general fact about conditional expectations that if F is any sub-σ-algebra of Σ then the orthogonal projection
is exactly the conditional expectation operator E, i.e.,
Hence,
This elementary result is the basis for the general Fujisaki-Kallianpur-Kunita equation of filtering theory.
More advanced result: nonlinear filtering SPDE
The complete knowledge of the filter at a time t would be given by the probability law of the signal Yt conditional on the sigma-field Gt generated by observations Z up to time t. If this probability law admits a density, informally
then under some regularity assumptions the density satisfies a non-linear stochastic partial differential equation (SPDE) driven by and called Kushner-Stratonovich equation, or a unnormalized version of the density satisfies a linear SPDE called Zakai equation. These equations can be formulated for the above system, but to simplify the exposition one can assume that the unobserved signal Y and the partially observed noisy signal Z satisfy the equations
In other terms, the system is simplified by assuming that the observation noise W is not state dependent.
One might keep a deterministic time dependent in front of but we assume this has been taken out by re-scaling.
For this particular system, the Kushner-Stratonovich SPDE for the density reads
where T denotes transposition, denotes the expectation with respect to the density p, and the forward diffusion operator is
where . If we choose the unnormalized density , the Zakai SPDE for the same system reads
These SPDEs for p and q are written in Ito calculus form. It is possible to write them in Stratonovich calculus form, which turns out to be helpful when deriving filtering approximations based on differential geometry, as in the projection filters. For example, the Kushner-Stratonovich equation written in Stratonovich calculus reads
From any of the densities p and q one can calculate all statistics of the signal Yt conditional on the sigma-field generated by observations Z up to time t, so that the densities give complete knowledge of the filter. Under the particular linear-constant assumptions with respect to Y, where the systems coefficients b and c are linear functions of Y and where and do not depend on Y, with the initial condition for the signal Y being Gaussian or deterministic, the density is Gaussian and it can be characterized by its mean and variance-covariance matrix, whose evolution is described by the Kalman-Bucy filter, which is finite dimensional. More generally, the evolution of the filter density occurs in an infinite-dimensional function space, and it has to be approximated via a finite dimensional approximation, as hinted above.
See also
- The smoothing problem, closely related to the filtering problem
- Filter (signal processing)
- Kalman filter, a well-known filtering algorithm for linear systems, related both to the filtering problem and the smoothing problem
- Extended Kalman filter, an extension of the Kalman filter to nonlinear systems
- Smoothing
- Projection filters
- Particle filters
References
- Stratonovich, R. L. (1959). Optimum nonlinear systems which bring about a separation of a signal with constant parameters from noise. Radiofizika, 2:6, pp. 892-901.
- Stratonovich, R.L. (1960). Application of the Markov processes theory to optimal filtering. Radio Engineering and Electronic Physics, 5:11, pp.1-19.
- Kushner, Harold. (1967). Nonlinear filtering: The exact dynamical equations satisfied by the conditional mode. Automatic Control, IEEE Transactions on Volume 12, Issue 3, Jun 1967 Page(s): 262 - 267
- Zakai, Moshe (1969), On the optimal filtering of diffusion processes. Zeit. Wahrsch. 11 230–243. MR242552, Zbl 0164.19201, doi:10.1007/BF00536382
- ^ Mireille Chaleyat-Maurel and Dominique Michel. Des resultats de non existence de filtre de dimension finie. Stochastics, 13(1+2):83-102, 1984.
- Maybeck, Peter S., Stochastic models, estimation, and control, Volume 141, Series Mathematics in Science and Engineering, 1979, Academic Press
- Damiano Brigo, Bernard Hanzon and François LeGland, A Differential Geometric approach to nonlinear filtering: the Projection Filter, I.E.E.E. Transactions on Automatic Control Vol. 43, 2 (1998), pp 247--252.
- Damiano Brigo, Bernard Hanzon and François Le Gland, Approximate Nonlinear Filtering by Projection on Exponential Manifolds of Densities, Bernoulli, Vol. 5, N. 3 (1999), pp. 495--534
- Del Moral, Pierre (1998). "Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems". Annals of Applied Probability. 8 (2) (Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996) ed.): 438–495. doi:10.1214/aoap/1028903535.
- ^ Bain, A., and Crisan, D. (2009). Fundamentals of Stochastic Filtering. Springer-Verlag, New York, https://doi.org/10.1007/978-0-387-76896-0
Further reading
- Jazwinski, Andrew H. (1970). Stochastic Processes and Filtering Theory. New York: Academic Press. ISBN 0-12-381550-9.
- Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. (See Section 6.1)