(Redirected from Fox–Wright Psi function)
Generalisation of the generalised hypergeometric function pFq(z)
In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):
Upon changing the normalisation
it becomes pFq(z) for A1...p = B1...q = 1.
The Fox–Wright function is a special case of the Fox H-function (Srivastava & Manocha 1984, p. 50):
A special case of Fox–Wright function appears as a part of the normalizing constant of the modified half-normal distribution with the pdf on is given as , where denotes the Fox–Wright Psi function.
Wright function
The entire function is often called the Wright function. It is the special case of of the Fox–Wright function. Its series representation is
This function is used extensively in fractional calculus and the stable count distribution. Recall that . Hence, a non-zero with zero is the simplest nontrivial extension of the exponential function in such context.
Three properties were stated in Theorem 1 of Wright (1933) and 18.1(30–32) of Erdelyi, Bateman Project, Vol 3 (1955) (p. 212)
Equation (a) is a recurrence formula. (b) and (c) provide two paths to reduce a derivative. And (c) can be derived from (a) and (b).
A special case of (c) is . Replacing with , we have
A special case of (a) is . Replacing with , we have
Two notations, and , were used extensively in the literatures:
M-Wright function
is known as the M-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes, generally referred to as time-fractional diffusion processes.
Its properties were surveyed in Mainardi et al (2010).
Through the stable count distribution, is connected to Lévy's stability index .
Its asymptotic expansion of for is
where
See also
- Prabhakar function
- Hypergeometric function
- Generalized hypergeometric function
- Modified half-normal distribution with the pdf on is given as , where denotes the Fox–Wright Psi function.
References
- ^ Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics – Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.
- Weisstein, Eric W. "Wright Function". From MathWorld--A Wolfram Web Resource. Retrieved 2022-12-03.
- Wright, E. (1933). "On the Coefficients of Power Series Having Exponential Singularities". Journal of the London Mathematical Society. Second Series: 71–79. doi:10.1112/JLMS/S1-8.1.71. S2CID 122652898.
- Erdelyi, A (1955). The Bateman Project, Volume 3. California Institute of Technology.
- Mainardi, Francesco; Mura, Antonio; Pagnini, Gianni (2010-04-17). The M-Wright function in time-fractional diffusion processes: a tutorial survey. arXiv:1004.2950.
- Fox, C. (1928). "The asymptotic expansion of integral functions defined by generalized hypergeometric series". Proc. London Math. Soc. 27 (1): 389–400. doi:10.1112/plms/s2-27.1.389.
- Wright, E. M. (1935). "The asymptotic expansion of the generalized hypergeometric function". J. London Math. Soc. 10 (4): 286–293. doi:10.1112/jlms/s1-10.40.286.
- Wright, E. M. (1940). "The asymptotic expansion of the generalized hypergeometric function". Proc. London Math. Soc. 46 (2): 389–408. doi:10.1112/plms/s2-46.1.389.
- Wright, E. M. (1952). "Erratum to "The asymptotic expansion of the generalized hypergeometric function"". J. London Math. Soc. 27: 254. doi:10.1112/plms/s2-54.3.254-s.
- Srivastava, H.M.; Manocha, H.L. (1984). A treatise on generating functions. E. Horwood. ISBN 0-470-20010-3.
- Miller, A. R.; Moskowitz, I.S. (1995). "Reduction of a Class of Fox–Wright Psi Functions for Certain Rational Parameters". Computers Math. Applic. 30 (11): 73–82. doi:10.1016/0898-1221(95)00165-u.
- Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics – Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.
External links
Categories: