Misplaced Pages

Frederick Reines

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Fred Reines) American physicist (1918–1998)

Frederick Reines
Born(1918-03-16)March 16, 1918
Paterson, New Jersey, U.S.
DiedAugust 26, 1998(1998-08-26) (aged 80)
Orange, California, U.S.
CitizenshipAmerican
Alma materNew York University
Stevens Institute of Technology
Known forNeutrinos
SpouseSylvia Samuels (m. 1940; 2 children)
Awards
Scientific career
FieldsPhysics
Institutions
ThesisNuclear fission and the liquid drop model of the nucleus (1944)
Doctoral advisorRichard D. Present
Doctoral studentsMichael K. Moe (1965)

Frederick Reines (/ˈraɪnəs/ RY-nəs; March 16, 1918 – August 26, 1998) was an American physicist. He was awarded the 1995 Nobel Prize in Physics for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment. He may be the only scientist in history "so intimately associated with the discovery of an elementary particle and the subsequent thorough investigation of its fundamental properties."

A graduate of Stevens Institute of Technology and New York University, Reines joined the Manhattan Project's Los Alamos Laboratory in 1944, working in the Theoretical Division in Richard Feynman's group. He became a group leader there in 1946. He participated in a number of nuclear tests, culminating in his becoming the director of the Operation Greenhouse test series in the Pacific in 1951.

In the early 1950s, working in Hanford and Savannah River Sites, Reines and Cowan developed the equipment and procedures with which they first detected the supposedly undetectable neutrinos in June 1956. Reines dedicated the major part of his career to the study of the neutrino's properties and interactions, which work would influence study of the neutrino for many researchers to come. This included the detection of neutrinos created in the atmosphere by cosmic rays, and the 1987 detection of neutrinos emitted from Supernova SN1987A, which inaugurated the field of neutrino astronomy.

Early life

Frederick Reines was born in Paterson, New Jersey, one of four children of Gussie (Cohen) and Israel Reines. His parents were Jewish emigrants from the same town in Russia, but only met in New York City, where they were later married. He had an older sister, Paula, who became a doctor, and two older brothers, David and William, who became lawyers. He said that his "early education was strongly influenced" by his studious siblings. He was the great-nephew of the Rabbi Yitzchak Yaacov Reines, the founder of Mizrachi, a religious Zionist movement.

The family moved to Hillburn, New York, where his father ran the general store, and he spent much of his childhood. He was an Eagle Scout. Looking back, Reines said: "My early childhood memories center around this typical American country store and life in a small American town, including Independence Day July celebrations marked by fireworks and patriotic music played from a pavilion bandstand."

Reines sang in a chorus, and as a soloist. For a time he considered the possibility of a singing career, and was instructed by a vocal coach from the Metropolitan Opera who provided lessons for free because the family did not have the money for them. The family later moved to North Bergen, New Jersey, residing on Kennedy Boulevard and 57th Street. Because North Bergen did not have a high school, he attended Union Hill High School in Union Hill, New Jersey (today Union City, New Jersey), from which he graduated in 1935.

From an early age, Reines exhibited an interest in science, and liked creating and building things. He later recalled that:

The first stirrings of interest in science that I remember occurred during a moment of boredom at religious school, when, looking out of the window at twilight through a hand curled to simulate a telescope, I noticed something peculiar about the light; it was the phenomenon of diffraction. That began for me a fascination with light.

Ironically, Reines excelled in literary and history courses, but received average or low marks in science and math in his freshman year of high school, though he improved in those areas by his junior and senior years through the encouragement of a teacher who gave him a key to the school laboratory. This cultivated a love of science by his senior year. In response to a question seniors were asked about what they wanted to do for a yearbook quote, he responded: "To be a physicist extraordinaire."

Reines was accepted into the Massachusetts Institute of Technology, but chose instead to attend Stevens Institute of Technology in Hoboken, New Jersey, where he earned his Bachelor of Science (B.S.) degree in mechanical engineering in 1939, and his Master of Science (M.S.) degree in mathematical physics in 1941, writing a thesis on "A Critical Review of Optical Diffraction Theory". He married Sylvia Samuels on August 30, 1940. They had two children, Robert and Alisa. He then entered New York University, where he earned his Doctor of Philosophy (Ph.D.) in 1944. He studied cosmic rays there under Serge A. Korff, but wrote his thesis under the supervision of Richard D. Present on "Nuclear fission and the liquid drop model of the nucleus". Publication of the thesis was delayed until after the end of World War II; it appeared in Physical Review in 1946.

Los Alamos Laboratory

Frederick Reines Los Alamos badge
Operation GreenhouseDog shot

In 1944 Richard Feynman recruited Reines to work in the Theoretical Division at the Manhattan Project's Los Alamos Laboratory, where he would remain for the next fifteen years. He joined Feynman's T-4 (Diffusion Problems) Group, which was part of Hans Bethe's T (Theoretical) Division. Diffusion was an important aspect of critical mass calculations. In June 1946, he became a group leader, heading the T-1 (Theory of Dragon) Group. An outgrowth of the "tickling the Dragon's tail" experiment, the Dragon was a machine that could attain a critical state for short bursts of time, which could be used as a research tool or power source.

Reines participated in a number of nuclear tests, and writing reports on their results. These included Operation Crossroads at Bikini Atoll in 1946, Operation Sandstone at Eniwetok Atoll in 1948, and Operation Ranger and Operation Buster–Jangle at the Nevada Test Site. In 1951 he was the director of Operation Greenhouse series of nuclear tests in the Pacific. This saw the first American tests of boosted fission weapons, an important step towards thermonuclear weapons. He studied the effects of nuclear blasts, and co-authored a paper with John von Neumann on Mach stem formation, an important aspect of an air blast wave.

In spite or perhaps because of his role in these nuclear tests, Reines was concerned about the dangers of radioactive pollution from atmospheric nuclear tests, and became an advocate of underground nuclear testing. In the wake of the Sputnik crisis, he participated in John Archibald Wheeler's Project 137, which evolved into JASON. He was also a delegate at the Atoms for Peace Conference in Geneva in 1958.

Discovery of the neutrino and the inner workings of stars

Photo of Clyde Cowan and Frederick Reines
Reines and Clyde Cowan

The neutrino is a subatomic particle first proposed by Wolfgang Pauli on December 4, 1930. The particle was required to resolve the problem of missing energy in observations of beta decay, when a neutron decays into a proton and an electron. The new hypothetical particle was required to preserve the fundamental law of conservation of energy. Enrico Fermi renamed it the neutrino, Italian for "little neutral one", and in 1934, proposed his theory of beta decay by which the electrons emitted from the nucleus were created by the decay of a neutron into a proton, an electron, and a neutrino:


n

p
+
e
+
ν
e

The neutrino accounted for the missing energy, but Fermi's theory described a particle with little mass and no electric charge that appeared to be impossible to observe directly. In a 1934 paper, Rudolf Peierls and Hans Bethe calculated that neutrinos could easily pass through the Earth, and concluded "there is no practically possible way of observing the neutrino."

Frederick Reines (far right) with Clyde Cowan (far left) and other members of Project Poltergeist

In 1951, Reines and his colleague Clyde Cowan decided to see if they could detect neutrinos and so prove their existence. At the conclusion of the Greenhouse test series, Reines had received permission from the head of T Division, J. Carson Mark, for a leave in residence to study fundamental physics. "So why did we want to detect the free neutrino?" he later explained, "Because everybody said, you couldn't do it."

According to Fermi's theory, there was also a corresponding reverse reaction, in which a neutrino combines with a proton to create a neutron and a positron:


ν
e +
p

n
+
e

The positron would soon be annihilated by an electron and produce two 0.51 MeV gamma rays, while the neutron would be captured by a proton and release a 2.2 MeV gamma ray. This would produce a distinctive signature that could be detected. They then realised that by adding cadmium salt to their liquid scintillator they would enhance the neutron capture reaction, resulting in a burst of gamma rays with a total energy of 9 MeV. For a neutrino source, they proposed using an atomic bomb. Permission for this was obtained from the laboratory director, Norris Bradbury. The plan was to detonate a "20-kiloton nuclear bomb, comparable to that dropped on Hiroshima, Japan". The detector was proposed to be dropped at the moment of explosion into a hole 40 meters from the detonation site "to catch the flux at its maximum"; it was named "El Monstro". Work began on digging a shaft for the experiment when J. M. B. Kellogg convinced them to use a nuclear reactor instead of a bomb. Although a less intense source of neutrinos, it had the advantage in allowing for multiple experiments to be carried out over a long period of time.

In 1953, they made their first attempts using one of the large reactors at the Hanford nuclear site in what is now known as the Cowan–Reines neutrino experiment; they named the experiment "Project Poltergeist". Their detector included 300 litres (66 imp gal; 79 US gal) of scintillating fluid and 90 photomultiplier tubes, but the effort was frustrated by background noise from cosmic rays. With encouragement from John A. Wheeler, they tried again in 1955, this time using one of the newer, larger 700 MW reactors at the Savannah River Site that emitted a high neutrino flux of 1.2 x 10 / cm sec. They also had a convenient, well-shielded location 11 metres (36 ft) from the reactor and 12 metres (39 ft) underground. On June 14, 1956, they were able to send Pauli a telegram announcing that the neutrino had been found. When Bethe was informed that he had been proven wrong, he said, "Well, you shouldn't believe everything you read in the papers."

Supernova SN1987A (the bright object in the center), as seen through the Hubble Space Telescope

From then on Reines dedicated the major part of his career to the study of the neutrino's properties and interactions, which work would influence study of the neutrino for future researchers to come. Cowan left Los Alamos in 1957 to teach at George Washington University, ending their collaboration. On the basis of his work in first detecting the neutrino, Reines became the head of the physics department of Case Western Reserve University from 1959 to 1966. At Case, he led a group that was the first to detect neutrinos created in the atmosphere by cosmic rays. Reines had a booming voice, and had been a singer since childhood. During this time, besides performing his duties as a research supervisor and chairman of the physics department, Reines sang in the Cleveland Orchestra Chorus under the direction of Robert Shaw in performances with George Szell and the Cleveland Orchestra.

In the early 1960s, Reines built a detector in the East Rand gold mine near Johannesburg, South Africa. The site was chosen because of its depth, 3.5 km; on February 23, 1965, the new detector captured its first atmospheric neutrinos. Reines brought his friends, an engineer August "Gus" Hruschka from the US, they worked together with South African physicist Friedel Sellschop of the University of Witwatersrand. Equipment was made in the Case Institute, and 20 tonnes of scintillation fluid in 50 containment tanks were transported from the US. The decision to work in an apartheid racist country was challenged by many colleagues of Reines, he himself said that "science transcended politics". The laboratory team in the mine was led by Reines' graduate students, first by William Kropp, and then by Henry Sobel. Experiment ran from 1963 and was closed in 1971, and captured 167 neutrino events.

In 1966, Reines took most of his neutrino research team with him when he left for the new University of California, Irvine (UCI), becoming its first dean of physical sciences. At UCI, Reines extended the research interests of some of his graduate students into the development of medical radiation detectors, such as for measuring total radiation delivered to the whole human body in radiation therapy.

Reines had prepared for the possibility of measuring the distant events of a supernova explosion. Supernova explosions are rare, but Reines thought he might be lucky enough to see one in his lifetime, and be able to catch the neutrinos streaming from it in his specially-designed detectors. During his wait for a supernova to explode, he put signs on some of his large neutrino detectors, calling them "Supernova Early Warning Systems". In 1987, neutrinos emitted from Supernova SN1987A were detected by the Irvine–Michigan–Brookhaven (IMB) Collaboration, which used an 8,000 ton Cherenkov detector located in a salt mine near Cleveland. Normally, the detectors recorded only a few background events each day. The supernova registered 19 events in just ten seconds. This discovery is regarded as inaugurating the field of neutrino astronomy.

In 1995 Reines was honored, along with Martin L. Perl, with the Nobel Prize in Physics for his work with Cowan in first detecting the neutrino. Unfortunately, Cowan had died in 1974 and the Nobel Prize is not awarded posthumously. Reines also received many other awards, including the J. Robert Oppenheimer Memorial Prize in 1981, the National Medal of Science in 1985, the Bruno Rossi Prize in 1989, the Michelson–Morley Award in 1990, the Panofsky Prize in 1992, and the Franklin Medal in 1992. He was elected a member of the National Academy of Sciences in 1980 and a foreign member of the Russian Academy of Sciences in 1994. He remained dean of physical sciences at UCI until 1974, and became a professor emeritus in 1988, but he continued teaching until 1991, and remained on UCI's faculty until his death.

Death

Frederick Reines Hall at the University of California, Irvine houses the Physics and Astronomy Department, and part of the Chemistry Department.

Reines died after a long illness at the University of California, Irvine Medical Center in Orange, California, on August 26, 1998. He was survived by his wife and children. His papers are compiled in the UCI Libraries. Frederick Reines Hall, which houses the Physics and Astronomy Department at the University of California, Irvine, was named in his honor.

Publications

Notes

  1. ^ Wilford, John Noble (August 28, 1998). "Frederick Reines Dies at 80; Nobelist Discovered Neutrino". The New York Times. Retrieved February 18, 2015.
  2. ^ Schultz, Jonas; Sobel, Hank. "Frederick Reines and the Neutrino". University of California, Irvine School of Physical Sciences. Archived from the original on February 20, 2014.
  3. ^ Kropp, William; Schultz, Jonas; Sobel, Henry (2009). Frederick Reines 1918-1998 A Biographical Memoir (PDF). Washington D.C.: National Academy of Sciences. Retrieved March 17, 2010.
  4. ^ "The Nobel Prize in Physics 1995". Nobel Foundation. Retrieved March 23, 2012.
  5. ^ Pope, Gennarose (March 25, 2012). "Bridge of troubled Kennedy Boulevard". The Union City Reporter. p. 12.
  6. "Nuclear fission and the liquid drop model of the nucleus". New York University. Retrieved February 18, 2015.
  7. Present, R. D.; Reines, F.; Knipp, J. K. (October 1946). "The Liquid Drop Model for Nuclear Fission". Physical Review. 70 (7–8): 557–558. Bibcode:1946PhRv...70..557P. doi:10.1103/PhysRev.70.557.2. hdl:2027/mdp.39015086430553. PMID 18880816.
  8. Truslow & Smith 1961, pp. 56–59.
  9. Close 2012, pp. 15–18.
  10. Fermi, E. (1968). "Fermi's Theory of Beta Decay". American Journal of Physics. 36 (12). Wilson, Fred L. (trans.): 1150–1160. Bibcode:1968AmJPh..36.1150W. doi:10.1119/1.1974382. Retrieved January 20, 2013.
  11. Close 2012, pp. 22–25.
  12. Bethe, H.; Peierls, R. (April 7, 1934). "The Neutrino". Nature. 133 (3362): 532. Bibcode:1934Natur.133..532B. doi:10.1038/133532a0. ISSN 0028-0836. S2CID 4001646.
  13. ^ Reines, Frederick (December 8, 1995). "The Neutrino: From Poltergeist to Particle" (PDF). Nobel Foundation. Retrieved August 12, 2024. Nobel Prize lecture
  14. ^ Lubkin, Gloria B. (1995). "Nobel Prize in Physics goes to Frederick Reines for the Detection of the Neutrino" (PDF). Physics Today. 48 (12): 17–19. Bibcode:1995PhT....48l..17L. doi:10.1063/1.2808286. ISSN 0031-9228. Archived from the original (PDF) on December 17, 2008.
  15. ^ Abbott, Alison (May 17, 2021). "The singing neutrino Nobel laureate who nearly bombed Nevada". Nature. 593 (7859): 334–335. Bibcode:2021Natur.593..334A. doi:10.1038/d41586-021-01318-y.
  16. Close 2012, pp. 37–41.
  17. ^ Close 2012, p. 42.
  18. ^ "In Memoriam, 1998. Frederick Reines, Physics; Radiological Sciences: Irvine". University of California. Retrieved February 19, 2015.
  19. ^ Cole, Leonard A (March 2021). Chasing the Ghost: Nobelist Fred Reines and the Neutrino. pp. 3–13. doi:10.1142/9789811231063_0001. ISBN 978-981-12-3105-6.
  20. "Frederick Reines wins Oppenheimer Prize". Physics Today. 34 (5): 94. May 1981. Bibcode:1981PhT....34R..94.. doi:10.1063/1.2914589.
  21. "The Passing of Frederick Reines, Physics Nobel Laureate in 1995". University of California, Irvine. Archived from the original on November 2, 2013.
  22. "Guide to the Frederick Reines Papers". Retrieved February 18, 2015 – via California Digital Library.
  23. Benjamin, Marisa. "Frederick Reines Hall at UC Irvine". About.com. Archived from the original on February 19, 2015. Retrieved February 18, 2015.

See also

References

External links

Laureates of the Nobel Prize in Physics
1901–1925
1926–1950
1951–1975
1976–2000
2001–
present
1995 Nobel Prize laureates
Chemistry
Literature (1995)Seamus Heaney (Ireland)
Peace
Physics
Physiology or Medicine
Economic SciencesRobert Lucas Jr. (United States)
Nobel Prize recipients
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
Portals: Categories: