In probability theory , the g-expectation is a nonlinear expectation based on a backwards stochastic differential equation (BSDE) originally developed by Shige Peng .
Definition
Given a probability space
(
Ω
,
F
,
P
)
{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )}
with
(
W
t
)
t
≥
0
{\displaystyle (W_{t})_{t\geq 0}}
is a (d -dimensional) Wiener process (on that space). Given the filtration generated by
(
W
t
)
{\displaystyle (W_{t})}
, i.e.
F
t
=
σ
(
W
s
:
s
∈
[
0
,
t
]
)
{\displaystyle {\mathcal {F}}_{t}=\sigma (W_{s}:s\in )}
, let
X
{\displaystyle X}
be
F
T
{\displaystyle {\mathcal {F}}_{T}}
measurable . Consider the BSDE given by:
d
Y
t
=
g
(
t
,
Y
t
,
Z
t
)
d
t
−
Z
t
d
W
t
Y
T
=
X
{\displaystyle {\begin{aligned}dY_{t}&=g(t,Y_{t},Z_{t})\,dt-Z_{t}\,dW_{t}\\Y_{T}&=X\end{aligned}}}
Then the g-expectation for
X
{\displaystyle X}
is given by
E
g
[
X
]
:=
Y
0
{\displaystyle \mathbb {E} ^{g}:=Y_{0}}
. Note that if
X
{\displaystyle X}
is an m -dimensional vector, then
Y
t
{\displaystyle Y_{t}}
(for each time
t
{\displaystyle t}
) is an m -dimensional vector and
Z
t
{\displaystyle Z_{t}}
is an
m
×
d
{\displaystyle m\times d}
matrix.
In fact the conditional expectation is given by
E
g
[
X
∣
F
t
]
:=
Y
t
{\displaystyle \mathbb {E} ^{g}:=Y_{t}}
and much like the formal definition for conditional expectation it follows that
E
g
[
1
A
E
g
[
X
∣
F
t
]
]
=
E
g
[
1
A
X
]
{\displaystyle \mathbb {E} ^{g}]=\mathbb {E} ^{g}}
for any
A
∈
F
t
{\displaystyle A\in {\mathcal {F}}_{t}}
(and the
1
{\displaystyle 1}
function is the indicator function ).
Existence and uniqueness
Let
g
:
[
0
,
T
]
×
R
m
×
R
m
×
d
→
R
m
{\displaystyle g:\times \mathbb {R} ^{m}\times \mathbb {R} ^{m\times d}\to \mathbb {R} ^{m}}
satisfy:
g
(
⋅
,
y
,
z
)
{\displaystyle g(\cdot ,y,z)}
is an
F
t
{\displaystyle {\mathcal {F}}_{t}}
-adapted process for every
(
y
,
z
)
∈
R
m
×
R
m
×
d
{\displaystyle (y,z)\in \mathbb {R} ^{m}\times \mathbb {R} ^{m\times d}}
∫
0
T
|
g
(
t
,
0
,
0
)
|
d
t
∈
L
2
(
Ω
,
F
T
,
P
)
{\displaystyle \int _{0}^{T}|g(t,0,0)|\,dt\in L^{2}(\Omega ,{\mathcal {F}}_{T},\mathbb {P} )}
the L2 space (where
|
⋅
|
{\displaystyle |\cdot |}
is a norm in
R
m
{\displaystyle \mathbb {R} ^{m}}
)
g
{\displaystyle g}
is Lipschitz continuous in
(
y
,
z
)
{\displaystyle (y,z)}
, i.e. for every
y
1
,
y
2
∈
R
m
{\displaystyle y_{1},y_{2}\in \mathbb {R} ^{m}}
and
z
1
,
z
2
∈
R
m
×
d
{\displaystyle z_{1},z_{2}\in \mathbb {R} ^{m\times d}}
it follows that
|
g
(
t
,
y
1
,
z
1
)
−
g
(
t
,
y
2
,
z
2
)
|
≤
C
(
|
y
1
−
y
2
|
+
|
z
1
−
z
2
|
)
{\displaystyle |g(t,y_{1},z_{1})-g(t,y_{2},z_{2})|\leq C(|y_{1}-y_{2}|+|z_{1}-z_{2}|)}
for some constant
C
{\displaystyle C}
Then for any random variable
X
∈
L
2
(
Ω
,
F
t
,
P
;
R
m
)
{\displaystyle X\in L^{2}(\Omega ,{\mathcal {F}}_{t},\mathbb {P} ;\mathbb {R} ^{m})}
there exists a unique pair of
F
t
{\displaystyle {\mathcal {F}}_{t}}
-adapted processes
(
Y
,
Z
)
{\displaystyle (Y,Z)}
which satisfy the stochastic differential equation.
In particular, if
g
{\displaystyle g}
additionally satisfies:
g
{\displaystyle g}
is continuous in time (
t
{\displaystyle t}
)
g
(
t
,
y
,
0
)
≡
0
{\displaystyle g(t,y,0)\equiv 0}
for all
(
t
,
y
)
∈
[
0
,
T
]
×
R
m
{\displaystyle (t,y)\in \times \mathbb {R} ^{m}}
then for the terminal random variable
X
∈
L
2
(
Ω
,
F
t
,
P
;
R
m
)
{\displaystyle X\in L^{2}(\Omega ,{\mathcal {F}}_{t},\mathbb {P} ;\mathbb {R} ^{m})}
it follows that the solution processes
(
Y
,
Z
)
{\displaystyle (Y,Z)}
are square integrable. Therefore
E
g
[
X
|
F
t
]
{\displaystyle \mathbb {E} ^{g}}
is square integrable for all times
t
{\displaystyle t}
.
See also
References
^ Philippe Briand; François Coquet; Ying Hu; Jean Mémin; Shige Peng (2000). "A Converse Comparison Theorem for BSDEs and Related Properties of g-Expectation" (PDF). Electronic Communications in Probability . 5 (13): 101–117.
Peng, S. (2004). "Nonlinear Expectations, Nonlinear Evaluations and Risk Measures". Stochastic Methods in Finance (PDF). Lecture Notes in Mathematics. Vol. 1856. pp. 165–138. doi :10.1007/978-3-540-44644-6_4 . ISBN 978-3-540-22953-7 . Archived from the original (pdf) on March 3, 2016. Retrieved August 9, 2012.
Chen, Z.; Chen, T.; Davison, M. (2005). "Choquet expectation and Peng's g -expectation". The Annals of Probability . 33 (3): 1179. arXiv :math/0506598 . doi :10.1214/009117904000001053 .
Rosazza Gianin, E. (2006). "Risk measures via g-expectations". Insurance: Mathematics and Economics . 39 : 19–65. doi :10.1016/j.insmatheco.2006.01.002 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑