Misplaced Pages

Glutaryl-CoA dehydrogenase

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from GCDH) Protein-coding gene in the species Homo sapiens
GCDH
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1SIQ, 1SIR, 2R0M, 2R0N

Identifiers
AliasesGCDH, ACAD5, GCD, glutaryl-CoA dehydrogenase, Glutaryl-Coenzyme A dehydrogenase
External IDsOMIM: 608801; MGI: 104541; HomoloGene: 130; GeneCards: GCDH; OMA:GCDH - orthologs
Gene location (Human)
Chromosome 19 (human)
Chr.Chromosome 19 (human)
Chromosome 19 (human)Genomic location for GCDHGenomic location for GCDH
Band19p13.13Start12,891,160 bp
End12,914,207 bp
Gene location (Mouse)
Chromosome 8 (mouse)
Chr.Chromosome 8 (mouse)
Chromosome 8 (mouse)Genomic location for GCDHGenomic location for GCDH
Band8 C3|8 41.28 cMStart85,613,022 bp
End85,620,550 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right lobe of liver

  • apex of heart

  • left ventricle

  • right ovary

  • gastrocnemius muscle

  • left ovary

  • mucosa of transverse colon

  • body of stomach

  • muscle of thigh

  • right adrenal gland
Top expressed in
  • right kidney

  • human kidney

  • left lobe of liver

  • proximal tubule

  • Ileal epithelium

  • cardiac muscle tissue of left ventricle

  • interventricular septum

  • extraocular muscle

  • choroid plexus of fourth ventricle

  • extensor digitorum longus muscle
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

2639

270076

Ensembl

ENSG00000105607

ENSMUSG00000003809

UniProt

Q92947

Q60759

RefSeq (mRNA)

NM_000159
NM_013976

NM_001044744
NM_008097

RefSeq (protein)

NP_000150
NP_039663

NP_001038209
NP_032123

Location (UCSC)Chr 19: 12.89 – 12.91 MbChr 8: 85.61 – 85.62 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse
glutaryl-CoA dehydrogenase (decarboxylating)
Identifiers
EC no.1.3.8.6
CAS no.37255-38-2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Glutaryl-CoA dehydrogenase (GCDH) is an enzyme encoded by the GCDH gene on chromosome 19. The protein belongs to the acyl-CoA dehydrogenase family (ACD). It catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and carbon dioxide in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. The enzyme exists in the mitochondrial matrix as a homotetramer of 45-kD subunits. Mutations in this gene result in the metabolic disorder glutaric aciduria type 1, which is also known as glutaric acidemia type I. Alternative splicing of this gene results in multiple transcript variants.

Structure

GCDH is a tetramer with tetrahedral symmetry, which allows it to be seen as a dimer of dimers. Its structure is very similar to other ACDs but the overall polypeptide fold of the GCDH is made up of three domains: an alpha-helical bundle amino-terminal domain, a beta-sheet domain in the middle, and another alpha-helical domain at the carboxyl terminus. The flavin adenine dinucleotide (FAD) is located at the junction between the middle beta-strand and the carboxyl terminal alpha-helix domain of one subunit and the carboxyl-terminal domain of the neighboring subunit. The most distinct difference between GCDH and other ACDs in terms of structure is the carboxyl and amino-terminal regions of the monomer and in the loop between beta-strands 4 and 5 because it is only made up of four residues, whereas other ACDs have much more. The substrate-binding pocket is filled with a string of three water molecules, which gets displaced when the substrate binds to the enzyme. The binding pocket is also smaller than some of the other ACD binding pockets because it is responsible for the chain-length specificity of GCDH for alternate substrates. The GCDH gene is mapped onto 19p13.2 and has an exon count of 15.

Function

GCDH is mainly known for the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and carbon dioxide, which is common in the mitochondrial oxidation of lysine, tryptophan, and hydroxylysine. The way it completes this task is through a series of physical, chemical, and electron-transfer steps. It first binds glutaryl-CoA substrate to the oxidized form of the enzyme and abstracts the alpha-proton of the substrate by the Glu370 catalytic base. Hydride is then transferred from the beta-carbon of the substrate to the N(5) of the FAD, yielding the 2e-reduced form of FAD. Thus, this allows for the decarboxylation of glutaconyl-CoA, an enzyme-bound intermediate, by breaking the Cγ-Cδ bond, resulting in formation of a dienolate anion, a proton, and CO2. The dienolate intermediate is protonated, resulting in crotonyl-CoA and a release of products from the active site. Finally, the 2e-reduced form of FAD is oxidized to two 1e steps by an external electron acceptor to complete the turnover.

Clinical significance

Mutations in the GCDH gene can lead to defects in the enzyme encoded by it which leads to the formation and accumulation of the metabolites glutaric acid and 3-hydroxyglutaric acid as well as glutarylcarnitine in body fluids, which essentially leads to glutaric aciduria type I, an autosomal recessive metabolic disorder. Symptoms for this disease include: macrocephaly, acute encephalitis-like crises, spasticity, dystonia, choreoathetosis, ataxia, dyskinesia and seizure and are prevalent one in every 100,000 individuals. Mutations in the carboxyl-terminal of GCDH have been most identified in patients with glutaric aciduria type I; more specifically, mutations in Ala389Val, Ala389Glu, Thr385Met, Ala377Val, and Ala377Thr all seem to be associated with the disorder because they dissociate to inactive monomers and/or dimers.

Interactions

GCDH has been seen to interact with:

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000105607Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000003809Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "GCDH glutaryl-CoA dehydrogenase [ Homo sapiens (human) ]". NCBI. Retrieved 6 August 2015.
  6. ^ Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim JJ (August 2004). "Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions". Biochemistry. 43 (30): 9674–84. doi:10.1021/bi049290c. PMID 15274622.
  7. ^ Georgiou T, Nicolaidou P, Hadjichristou A, Ioannou R, Dionysiou M, Siama E, Chappa G, Anastasiadou V, Drousiotou A (September 2014). "Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations". Clinical Biochemistry. 47 (13–14): 1300–5. doi:10.1016/j.clinbiochem.2014.06.017. PMID 24973495.
  8. Rao KS, Albro M, Dwyer TM, Frerman FE (December 2006). "Kinetic mechanism of glutaryl-CoA dehydrogenase". Biochemistry. 45 (51): 15853–61. doi:10.1021/bi0609016. PMID 17176108.

External links

Metabolism: Protein metabolism, synthesis and catabolism enzymes
Essential amino acids are in Capitals
Kacetyl-CoA
LYSINE
LEUCINE

(See Template:Leucine metabolism in humans – this diagram does not include the pathway for β-leucine synthesis via leucine 2,3-aminomutase)

TRYPTOPHAN
PHENYLALANINEtyrosine
  • (see below)
G
G→pyruvate
citrate
glycineserine
alanine
cysteine
threonine
G→glutamate
α-ketoglutarate
HISTIDINE
proline
arginine
alpha-ketoglutarate→TCA
Other
G→propionyl-CoA
succinyl-CoA
VALINE
ISOLEUCINE
METHIONINE
THREONINE
succinyl-CoA→TCA
G→fumarate
PHENYLALANINEtyrosine
G→oxaloacetate
asparagineaspartate
Oxidoreductases: CH–CH oxidoreductases (EC 1.3)
1.3.1: NAD/NADP acceptor
1.3.3: Oxygen acceptor
1.3.5: Quinone
1.3.99: Other acceptors
Enzymes
Activity
Regulation
Classification
Kinetics
Types

Categories: