Misplaced Pages

Galactose-1-phosphate uridylyltransferase

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Galactose-1-phosphate uridyltransferase)

Mammalian protein found in Homo sapiens
GALT
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

5IN3

Identifiers
AliasesGALT, entrez:2592, galactose-1-phosphate uridylyltransferase
External IDsOMIM: 606999; MGI: 95638; HomoloGene: 126; GeneCards: GALT; OMA:GALT - orthologs
Gene location (Human)
Chromosome 9 (human)
Chr.Chromosome 9 (human)
Chromosome 9 (human)Genomic location for GALTGenomic location for GALT
Band9p13.3Start34,638,133 bp
End34,651,035 bp
Gene location (Mouse)
Chromosome 4 (mouse)
Chr.Chromosome 4 (mouse)
Chromosome 4 (mouse)Genomic location for GALTGenomic location for GALT
Band4 A5|4 22.07 cMStart41,755,228 bp
End41,758,695 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right lobe of liver

  • right adrenal gland

  • apex of heart

  • right adrenal cortex

  • left adrenal cortex

  • right lobe of thyroid gland

  • granulocyte

  • right ovary

  • anterior pituitary

  • left lobe of thyroid gland
Top expressed in
  • superior frontal gyrus

  • Cerebellum

  • cerebellar cortex

  • renal cortex

  • proximal tubule

  • primary visual cortex

  • striatum of neuraxis

  • right kidney

  • heart

  • adrenal gland
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

2592

14430

Ensembl

ENSG00000213930

ENSMUSG00000036073

UniProt

P07902

Q03249

RefSeq (mRNA)

NM_001258332
NM_000155
NM_147131
NM_147132

NM_016658
NM_001302511

RefSeq (protein)

NP_000146
NP_001245261

NP_001289440
NP_057867
NP_001356064
NP_001356069
NP_001356070

NP_001356071
NP_001356072
NP_001356073
NP_001356076
NP_001382559

Location (UCSC)Chr 9: 34.64 – 34.65 MbChr 4: 41.76 – 41.76 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse
Galactose-1-phosphate uridyl transferase, N-terminal domain
Identifiers
SymbolGalP_UDP_transf
PfamPF01087
Pfam clanCL0265
PROSITEPDOC00108
SCOP21hxp / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Galactose-1-phosphate uridyl transferase, C-terminal domain
structure of nucleotidyltransferase complexed with udp-galactose
Identifiers
SymbolGalP_UDP_tr_C
PfamPF02744
Pfam clanCL0265
InterProIPR005850
PROSITEPDOC00108
SCOP21hxp / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Galactose-1-phosphate uridyltransferase (or GALT, G1PUT) is an enzyme (EC 2.7.7.12) responsible for converting ingested galactose to glucose.

Galactose-1-phosphate uridyltransferase (GALT) catalyzes the second step of the Leloir pathway of galactose metabolism, namely:

UDP-glucose + galactose 1-phosphate {\displaystyle \rightleftharpoons } glucose 1-phosphate + UDP-galactose

The expression of GALT is controlled by the actions of the FOXO3 gene. The absence of this enzyme results in classic galactosemia in humans and can be fatal in the newborn period if lactose is not removed from the diet. The pathophysiology of galactosemia has not been clearly defined.

Mechanism

GALT catalyzes the second reaction of the Leloir pathway of galactose metabolism through ping pong bi-bi kinetics with a double displacement mechanism. This means that the net reaction consists of two reactants and two products (see the reaction above) and it proceeds by the following mechanism: the enzyme reacts with one substrate to generate one product and a modified enzyme, which goes on to react with the second substrate to make the second product while regenerating the original enzyme. In the case of GALT, the His166 residue acts as a potent nucleophile to facilitate transfer of a nucleotide between UDP-hexoses and hexose-1-phosphates.

  1. UDP-glucose + E-His ⇌ Glucose-1-phosphate + E-His-UMP
  2. Galactose-1-phosphate + E-His-UMP ⇌ UDP-galactose + E-His
Two-step action of galactose-1-phosphate uridylyltransferase. Image adapted from

Structural studies

The three-dimensional structure at 180 pm resolution (x-ray crystallography) of GALT was determined by Wedekind, Frey, and Rayment, and their structural analysis found key amino acids essential for GALT function. Among these are Leu4, Phe75, Asn77, Asp78, Phe79, and Val108, which are consistent with residues that have been implicated both in point mutation experiments as well as in clinical screening that play a role in human galactosemia.

GALT also has minimal (~0.1%) GalNAc transferase activity. X-ray crystallography revealed that the side chain of Tyr289 forms a hydrogen bond with the N-acetyl group of UDP-GalNAc. Point mutation of residue Tyr289 to Leu, Ile, or Asn eliminates this interaction, enhancing GalNAc transferase activity, with the Y289L mutation showing comparable GalNAc transferase activity as the wild-type enzyme's Gal transferase activity.

Clinical significance

Deficiency of GALT causes classic galactosemia. Galactosemia is an autosomal recessive inherited disorder detectable in newborns and childhood. It occurs at approximately 1 in every 40,000-60,000 live-born infants. Classical galactosemia (G/G) is caused by a deficiency in GALT activity, whereas the more common clinical manifestations, Duarte (D/D) and the Duarte/Classical variant (D/G) are caused by the attenuation of GALT activity. Symptoms include ovarian failure, developmental coordination disorder (difficulty speaking correctly and consistently), and neurologic deficits. A single mutation in any of several base pairs can lead to deficiency in GALT activity. For example, a single mutation from A to G in exon 6 of the GALT gene changes Glu188 to an arginine and a mutation from A to G in exon 10 converts Asn314 to an aspartic acid. These two mutations also add new restriction enzyme cut sites, which enable detection by and large-scale population screening with PCR (polymerase chain reaction). Screening has mostly eliminated neonatal death by G/G galactosemia, but the disease, due to GALT’s role in the biochemical metabolism of ingested galactose (which is toxic when accumulated) to the energetically useful glucose, can certainly be fatal. However, those afflicted with galactosemia can live relatively normal lives by avoiding milk products and anything else containing galactose (because it cannot be metabolized), but there is still the potential for problems in neurological development or other complications, even in those who avoid galactose.

Disease database

Galactosemia (GALT) Mutation Database

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000213930Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000036073Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: GALT galactose-1-phosphate uridylyltransferase".
  6. Wong LJ, Frey PA (September 1974). "Galactose-1-phosphate uridylyltransferase: rate studies confirming a uridylyl-enzyme intermediate on the catalytic pathway". Biochemistry. 13 (19): 3889–3894. doi:10.1021/bi00716a011. PMID 4606575.
  7. "Double displacement mechanism - Definition". Archived from the original on 2016-03-03. Retrieved 2010-05-19.
  8. ^ Wedekind JE, Frey PA, Rayment I (September 1995). "Three-dimensional structure of galactose-1-phosphate uridylyltransferase from Escherichia coli at 1.8 A resolution". Biochemistry. 34 (35): 11049–11061. doi:10.1021/bi00035a010. PMID 7669762.
  9. "Untitled Document". Archived from the original on 2008-12-04. Retrieved 2010-05-19.
  10. Seyrantepe V, Ozguc M, Coskun T, Ozalp I, Reichardt JK (1999). "Identification of mutations in the galactose-1-phosphate uridyltransferase (GALT) gene in 16 Turkish patients with galactosemia, including a novel mutation of F294Y. Mutation in brief no. 235. Online". Human Mutation. 13 (4): 339. doi:10.1002/(SICI)1098-1004(1999)13:4<339::AID-HUMU18>3.0.CO;2-S. PMID 10220154.
  11. Ramakrishnan B, Qasba PK (June 2002). "Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity". The Journal of Biological Chemistry. 277 (23): 20833–20839. doi:10.1074/jbc.M111183200. PMID 11916963.
  12. ^ Fridovich-Keil JL (December 2006). "Galactosemia: the good, the bad, and the unknown". Journal of Cellular Physiology. 209 (3): 701–705. doi:10.1002/jcp.20820. PMID 17001680. S2CID 32233614.
  13. ^ Elsas LJ, Langley S, Paulk EM, Hjelm LN, Dembure PP (1995). "A molecular approach to galactosemia". European Journal of Pediatrics. 154 (7 Suppl 2): S21–S27. doi:10.1007/BF02143798. PMID 7671959. S2CID 11937698.
  14. "Apraxia of Speech". Archived from the original on 2006-02-28. Retrieved 2010-05-19.
  15. Dobrowolski SF, Banas RA, Suzow JG, Berkley M, Naylor EW (February 2003). "Analysis of common mutations in the galactose-1-phosphate uridyl transferase gene: new assays to increase the sensitivity and specificity of newborn screening for galactosemia". The Journal of Molecular Diagnostics. 5 (1): 42–47. doi:10.1016/S1525-1578(10)60450-3. PMC 1907369. PMID 12552079.
  16. Lai K, Elsas LJ, Wierenga KJ (November 2009). "Galactose toxicity in animals". IUBMB Life. 61 (11): 1063–1074. doi:10.1002/iub.262. PMC 2788023. PMID 19859980.
  17. "Galactosemia - Treatment". Archived from the original on 2002-08-28.

Further reading

External links

Fructose / Fructolysis
Sorbitol
Galactose / Galactolysis
Lactose
Mannose
Transferases: phosphorus-containing groups (EC 2.7)
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4)
2.7.1: OH acceptor
2.7.2: COOH acceptor
2.7.3: N acceptor
2.7.4: PO4 acceptor
2.7.6: diphosphotransferase
(P2O7)
2.7.7: nucleotidyltransferase
(PO4-nucleoside)
Polymerase
DNA polymerase
DNA-directed DNA polymerase
I/A
γ
θ
ν
T7
Taq
II/B
α
δ
ε
ζ
Pfu
III/C
IV/X
β
λ
μ
TDT
V/Y
η
ι
κ
RNA-directed DNA polymerase
Reverse transcriptase
Telomerase
RNA polymerase
Template-directed
RNA polymerase I
II
III
IV
V
ssRNAP
POLRMT
Primase
1
2
PrimPol
RNA-dependent RNA polymerase
Polyadenylation
PAP
PNPase
Phosphorolytic
3' to 5' exoribonuclease
Nucleotidyltransferase
Guanylyltransferase
Other
2.7.8: miscellaneous
Phosphatidyltransferases
Glycosyl-1-phosphotransferase
2.7.10-2.7.13: protein kinase
(PO4; protein acceptor)
2.7.10: protein-tyrosine
2.7.11: protein-serine/threonine
2.7.12: protein-dual-specificity
2.7.13: protein-histidine
Enzymes
Activity
Regulation
Classification
Kinetics
Types
Portal: Categories: