Misplaced Pages

Garbage patch

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Garbage patches) Gyre of marine debris
Trash washed ashore in Hawaii from the Great Pacific Garbage Patch

A garbage patch is a gyre of marine debris particles caused by the effects of ocean currents and increasing plastic pollution by human populations. These human-caused collections of plastic and other debris are responsible for ecosystem and environmental problems that affect marine life, contaminate oceans with toxic chemicals, and contribute to greenhouse gas emissions. Once waterborne, marine debris becomes mobile. Flotsam can be blown by the wind, or follow the flow of ocean currents, often ending up in the middle of oceanic gyres where currents are weakest.

Within garbage patches, the waste is not compact, and although most of it is near the surface of the ocean, it can be found up to more than 30 metres (100 ft) deep in the water. Patches contain plastics and debris in a range of sizes from Microplastics and small scale plastic pellet pollution, to large objects such as fishing nets and consumer goods and appliances lost from flood and shipping loss.

Garbage patches grow because of widespread loss of plastic from human trash collection systems. The United Nations Environmental Program estimated that "for every square mile of ocean" there are about "46,000 pieces of plastic". The 10 largest emitters of oceanic plastic pollution worldwide are, from the most to the least, China, Indonesia, Philippines, Vietnam, Sri Lanka, Thailand, Egypt, Malaysia, Nigeria, and Bangladesh, largely through the rivers Yangtze, Indus, Yellow, Hai, Nile, Ganges, Pearl, Amur, Niger, and the Mekong, and accounting for "90 percent of all the plastic that reaches the world's oceans". Asia was the leading source of mismanaged plastic waste, with China alone accounting for 2.4 million metric tons.

The best known of these is the Great Pacific Garbage Patch which has the highest density of marine debris and plastic. The Pacific Garbage patch has two mass buildups: the western garbage patch and the eastern garbage patch, the former off the coast of Japan and the latter between California and Hawaii. These garbage patches contain 90 million tonnes (100 million short tons) of debris. Other identified patches include the North Atlantic garbage patch between North America and Africa, the South Atlantic garbage patch located between eastern South America and the tip of Africa, the South Pacific garbage patch located west of South America, and the Indian Ocean garbage patch found east of South Africa listed in order of decreasing size.

Identified patches

Of the five gyres on this map, all have significant garbage patches.

In 2014, there were five areas across all the oceans where the majority of plastic concentrated. Researchers collected a total of 3070 samples across the world to identify hot spots of surface level plastic pollution. The pattern of distribution closely mirrored models of oceanic currents with the North Pacific Gyre, or Great Pacific Garbage Patch, being the highest density of plastic accumulation. The other four garbage patches include the North Atlantic garbage patch between the North America and Africa, the South Atlantic garbage patch located between eastern South America and the tip of Africa, the South Pacific garbage patch located west of South America, and the Indian Ocean garbage patch found east of South Africa.

Great Pacific

These paragraphs are an excerpt from Great Pacific Garbage Patch.

The Great Pacific Garbage Patch (also Pacific trash vortex and North Pacific Garbage Patch) is a garbage patch, a gyre of marine debris particles, in the central North Pacific Ocean. It is located roughly from 135°W to 155°W and 35°N to 42°N. The collection of plastic and floating trash originates from the Pacific Rim, including countries in Asia, North America, and South America.

Despite the common public perception of the patch existing as giant islands of floating garbage, its low density (4 particles per cubic metre (3.1/cu yd)) prevents detection by satellite imagery, or even by casual boaters or divers in the area. This is because the patch is a widely dispersed area consisting primarily of suspended "fingernail-sized or smaller"—often microscopic—particles in the upper water column known as microplastics.

Researchers from The Ocean Cleanup project claimed that the patch covers 1.6 million square kilometres (620,000 square miles) consisting of 45,000–129,000 metric tons (50,000–142,000 short tons) of plastic as of 2018. Its goal is to remove half of the plastic pollution by 2027 using floating barriers anchored to the seabed. The same 2018 study found that, while microplastics dominate the area by count, 92% of the mass of the patch consists of larger objects which have not yet fragmented into microplastics. Some of the plastic in the patch is over 50 years old, and includes items (and fragments of items) such as "plastic lighters, toothbrushes, water bottles, pens, baby bottles, cell phones, plastic bags, and nurdles".

Research indicates that the patch is rapidly accumulating. The patch is believed to have increased "10-fold each decade" since 1945. The gyre contains approximately six pounds of plastic for every pound of plankton. A similar patch of floating plastic debris is found in the Atlantic Ocean, called the North Atlantic garbage patch. This growing patch contributes to other environmental damage to marine ecosystems and species.

South Pacific

These paragraphs are an excerpt from South Pacific garbage patch. The South Pacific garbage patch is an area of ocean with increased levels of marine debris and plastic particle pollution, within the ocean's pelagic zone. This area is in the South Pacific Gyre, which itself spans from waters east of Australia to the South American continent, as far north as the Equator, and south until reaching the Antarctic Circumpolar Current. The degradation of plastics in the ocean also leads to a rise in the level of toxics in the area. The garbage patch was confirmed in mid-2017, and has been compared to the Great Pacific Garbage Patch's state in 2007, making the former ten years younger. The South Pacific garbage patch is not visible on satellites, and is not a landmass. Most particles are smaller than a grain of rice. A researcher said: "This cloud of microplastics extends both vertically and horizontally. It's more like smog than a patch".

Indian Ocean

These paragraphs are an excerpt from Indian Ocean garbage patch. The Indian Ocean garbage patch, discovered in 2010, is a marine garbage patch, a gyre of marine litter, suspended in the upper water column of the central Indian Ocean, specifically the Indian Ocean Gyre, one of the five major oceanic gyres. The patch does not appear as a continuous debris field. As with other patches in each of the five oceanic gyres, the plastics in it break down to ever smaller particles, and to constituent polymers. As with the other patches, the field constitutes an elevated level of pelagic plastics, chemical sludge, and other debris; primarily particles that are invisible to the naked eye. The concentration of particle debris has been estimated to be approximately 10,000 particles per square kilometer.

North Atlantic

These paragraphs are an excerpt from North Atlantic garbage patch.

The North Atlantic garbage patch is a garbage patch of man-made marine debris found floating within the North Atlantic Gyre, originally documented in 1972. A 22-year research study conducted by the Sea Education Association estimates the patch to be hundreds of kilometers across, with a density of more than 200,000 pieces of debris per square kilometer. The garbage originates from human-created waste traveling from rivers into the ocean and mainly consists of microplastics. The garbage patch is a large risk to wildlife (and to humans) through plastic consumption and entanglement.

There have only been a few awareness and clean-up efforts for the North Atlantic garbage patch, such as The Garbage Patch State at UNESCO and The Ocean Cleanup, as most of the research and cleanup efforts have been focused on the Great Pacific Garbage Patch, a similar garbage patch in the north Pacific.

Environmental issues

Main articles: Marine debris and Marine plastic pollution

Photodegradation of plastics

See also: Photodegradation and Microplastics
Washed-up plastic waste on a beach in Singapore

The North Atlantic patch is one of several oceanic regions where researchers have studied the effects and impact of plastic photodegradation in the neustonic layer of water. Unlike organic debris, which biodegrades, plastic disintegrates into ever smaller pieces while remaining a polymer (without changing chemically). This process continues down to the molecular level. Some plastics decompose within a year of entering the water, releasing potentially toxic chemicals such as bisphenol A, PCBs and derivatives of polystyrene.

As the plastic flotsam photodegrades into smaller and smaller pieces, it concentrates in the upper water column. As it disintegrates, the pieces become small enough to be ingested by aquatic organisms that reside near the ocean's surface. Plastic may become concentrated in neuston, thereby entering the food chain. Disintegration means that much of the plastic is too small to be seen. Moreover, plastic exposed to sunlight and in watering environments produce greenhouse gases, leading to further environmental impact.

Effects on marine life

The 2017 United Nations Ocean Conference estimated that the oceans might contain more weight in plastics than fish by the year 2050. Some long-lasting plastics end up in the stomachs of marine animals. Plastic attracts seabirds and fish. When marine life consumes plastic allowing it to enter the food chain, this can lead to greater problems when species that have consumed plastic are then eaten by other predators.

Animals can also become trapped in plastic nets and rings, which can cause death. Plastic pollution affects at least 700 marine species, including sea turtles, seals, seabirds, fish, whales, and dolphins. Cetaceans have been sighted within the patch, which poses entanglement and ingestion risks to animals using the Great Pacific Garbage Patch as a migration corridor or core habitat.

Plastic consumption

An exhibit at the Mote Marine Laboratory that displays plastic bags in the ocean that look similar to jellyfish.

With the increased amount of plastic in the ocean, living organisms are now at a greater risk of harm from plastic consumption and entanglement. Approximately 23% of aquatic mammals, and 36% of seabirds have experienced the detriments of plastic presence in the ocean. Since as much as 70% of the trash is estimated to be on the ocean floor, and microplastics are only millimeters wide, sealife at nearly every level of the food chain is affected. Animals who feed off of the bottom of the ocean risk sweeping microplastics into their systems while gathering food. Smaller marine life such as mussels and worms sometimes mistake plastic for their prey.

Larger animals are also affected by plastic consumption because they feed on fish, and are indirectly consuming microplastics already trapped inside their prey. Likewise, humans are also susceptible to microplastic consumption. People who eat seafood also eat some of the microplastics that were ingested by marine life. Oysters and clams are popular vehicles for human microplastic consumption. Animals who are within the general vicinity of the water are also affected by the plastic in the ocean. Studies have shown 36% species of seabirds are consuming plastic because they mistake larger pieces of plastic for food. Plastic can cause blockage of intestines as well as tearing of interior stomach and intestinal lining of marine life, ultimately leading to starvation and death.

Entanglement

Not all marine life is affected by the consumption of plastic. Some instead find themselves tangled in larger pieces of garbage that cause just as much harm as the barely visible microplastics. Trash that has the possibility of wrapping itself around a living organism may cause strangulation or drowning. If the trash gets stuck around a ligament that is not vital for airflow, the ligament may grow with a malformation. Plastic's existence in the ocean becomes cyclical because marine life that is killed by it ultimately decompose in the ocean, re-releasing the plastics into the ecosystem.

Deposits on landmasses

Research in 2017 reported "the highest density of plastic rubbish anywhere in the world" on remote and uninhabited Henderson Island in South Pacific as a result of the South Pacific Gyre. The beaches contained an estimated 37.7 million items of debris together weighing 17.6 tonnes. In a study transect on North Beach, each day 17 to 268 new items washed up on a 10-metre section.

References

  1. ^ "Marine Debris in the North Pacific A Summary of Existing Information and Identification of Data Gaps" (PDF). United States Environmental Protection Agency. 24 July 2015.
  2. Maser, Chris (2014). Interactions of Land, Ocean and Humans: A Global Perspective. CRC Press. pp. 147–48. ISBN 978-1482226393.
  3. Jambeck, Jenna R.; Geyer, Roland; Wilcox, Chris (12 February 2015). "Plastic waste inputs from land into the ocean" (PDF). Science. 347 (6223): 769. Bibcode:2015Sci...347..768J. doi:10.1126/science.1260352. PMID 25678662. S2CID 206562155. Archived from the original (PDF) on 22 January 2019. Retrieved 28 August 2018.
  4. Christian Schmidt; Tobias Krauth; Stephan Wagner (11 October 2017). "Export of Plastic Debris by Rivers into the Sea" (PDF). Environmental Science & Technology. 51 (21): 12246–12253. Bibcode:2017EnST...5112246S. doi:10.1021/acs.est.7b02368. PMID 29019247. The 10 top-ranked rivers transport 88–95% of the global load into the sea
  5. Franzen, Harald (30 November 2017). "Almost all plastic in the ocean comes from just 10 rivers". Deutsche Welle. Retrieved 18 December 2018. It turns out that about 90 percent of all the plastic that reaches the world's oceans gets flushed through just 10 rivers: The Yangtze, the Indus, Yellow River, Hai River, the Nile, the Ganges, Pearl River, Amur River, the Niger, and the Mekong (in that order).
  6. Robert Lee Hotz (13 February 2015). "Asia Leads World in Dumping Plastic in Seas". Wall Street Journal. Archived from the original on 23 February 2015.
  7. Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L. (2014-07-15). "Plastic debris in the open ocean". Proceedings of the National Academy of Sciences. 111 (28): 10239–10244. Bibcode:2014PNAS..11110239C. doi:10.1073/pnas.1314705111. ISSN 0027-8424. PMC 4104848. PMID 24982135.
  8. ^ Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L. (2014-07-15). "Plastic debris in the open ocean". Proceedings of the National Academy of Sciences. 111 (28): 10239–10244. Bibcode:2014PNAS..11110239C. doi:10.1073/pnas.1314705111. ISSN 0027-8424. PMC 4104848. PMID 24982135.
  9. Lebreton, Laurent; Royer, Sarah-Jeanne; Peytavin, Axel; Strietman, Wouter Jan; Smeding-Zuurendonk, Ingeborg; Egger, Matthias (1 September 2022). "Industrialised fishing nations largely contribute to floating plastic pollution in the North Pacific subtropical gyre". Scientific Reports. 12 (1): 12666. Bibcode:2022NatSR..1212666L. doi:10.1038/s41598-022-16529-0. ISSN 2045-2322. PMC 9436981. PMID 36050351. This article incorporates text from this source, which is available under the CC BY 4.0 license.
  10. See the relevant sections below for specific references concerning the discovery and history of the patch. A general overview is provided in Dautel, Susan L. (2007). "Transoceanic Trash: International and United States Strategies for the Great Pacific Garbage Patch". Golden Gate University Environmental Law Journal. 3 (1): 181.
  11. "World's largest collection of ocean garbage is twice the size of Texas". USA Today. Archived from the original on 15 February 2020. Retrieved 29 April 2018.
  12. Philp, Richard B. (2013). Ecosystems and Human Health: Toxicology and Environmental Hazards (3rd ed.). CRC Press. p. 116. ISBN 978-1466567214.
  13. Albeck-Ripka, Livia (22 March 2018). "The 'Great Pacific Garbage Patch' Is Ballooning, 87,000,000,000 Tons of Plastic and Counting". The New York Times. ISSN 0362-4331. Archived from the original on 11 January 2020. Retrieved 26 February 2020.
  14. ^ Frias, J.; Nash, Roisin (2019). "Microplastics: Finding a consensus on the definition". Marine Pollution Bulletin. 138. Elsevier: 145–147. Bibcode:2019MarPB.138..145F. doi:10.1016/j.marpolbul.2018.11.022. ISSN 0025-326X. PMID 30660255. S2CID 58550075. Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A. (22 March 2018). "Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic". Scientific Reports. 8 (1): 4666. Bibcode:2018NatSR...8.4666L. doi:10.1038/s41598-018-22939-w. ISSN 2045-2322. PMC 5864935. PMID 29568057. S2CID 4093211.
  15. Evans-Pughe, Christine (February 2017). "Can we engineer our way towards cleaner oceans?". Engineering & Technology.
  16. Maser, Chris (2014). Interactions of Land, Ocean and Humans: A Global Perspective. CRC Press. pp. 147–48. ISBN 978-1482226393.
  17. "Great Pacific garbage patch: Plastic turning vast area of ocean into ecological nightmare". Santa Barbara News-Press. Archived from the original on 12 September 2015. Retrieved 13 October 2008.
  18. Lovett, Richard A. (2 March 2010). "Huge Garbage Patch Found in Atlantic Too". National Geographic News. National Geographic Society. Archived from the original on 5 March 2010. Retrieved 4 March 2010.
  19. Gill, Victoria (24 February 2010). "Plastic rubbish blights Atlantic Ocean". BBC. Archived from the original on 27 August 2017. Retrieved 16 March 2010.
  20. "South Pacific Gyre – Correntes Oceânicas" – via Google Sites.
  21. Barry, Carolyn (20 August 2009). "Plastic Breaks Down in Ocean, After All And Fast". National Geographic Society. Archived from the original on August 26, 2009.
  22. ^ Nield, David (25 July 2017). "There's Another Huge Plastic Garbage Patch in The Pacific Ocean". Sciencealert.com. ScienceAlert.
  23. "Ocean Geography ~ MarineBio Conservation Society". www.marinebio.org. 17 June 2018. Retrieved 2021-09-17.
  24. First Voyage to South Atlantic Pollution Site SustainableBusiness.com News access-date=10 December 2021
  25. New garbage patch discovered in Indian Ocean Archived 2 October 2011 at the Wayback Machine, Lori Bongiorno, Green Yahoo, 27 July 2010
  26. Opinion: Islands are 'natural nets' for plastic-choked seas Archived 6 October 2012 at the Wayback Machine Marcus Eriksen for CNN, Petroleum, CNN Tech 24 June 2010
  27. Our Ocean Backyard: Exploring plastic seas Archived 20 June 2010 at the Wayback Machine, Dan Haifley, 15 May 2010, Santa Cruz Sentinel
  28. Life aquatic choked by plastic Archived 14 October 2012 at the Wayback Machine 14 November 2010, Times Live
  29. Moore, Charles (November 2003). "Across the Pacific Ocean, plastics, plastics, everywhere". Natural History Magazine. Archived from the original on 2009-07-06.
  30. Sesini, Marzia (August 2011). "The Garbage Patch In The Oceans: The Problem And Possible Solutions" (PDF). Columbia University.
  31. For a discussion of the current sampling techniques and particle size, see Peter Ryan, Charles Moore et al., Monitoring the abundance of plastic debris in the marine environment. Phil. Trans. R. Soc. B 27 July 2009 vol. 364 no. 1526 1999–2012, doi:10.1098/rstb.2008.0207
  32. "OSU: Reports of giant ocean 'garbage patch' are exaggerated". 4 January 2011. Archived from the original on 14 February 2011. Retrieved 7 January 2011.
  33. Transoceanic Trash: International and United States Strategies for the Great Pacific Garbage Patch, Susan L. Dautel, 3 Golden Gate U. Envtl. L.J. 181 (2009)
  34. Carpenter, E.J.; Smith, K.L. (1972). "Plastics on the Sargasso Sea Surface, in Science". Science. 175 (4027): 1240–1241. doi:10.1126/science.175.4027.1240. PMID 5061243. S2CID 20038716.
  35. "Mānoa: UH Mānoa scientist predicts plastic garbage patch in Atlantic Ocean | University of Hawaii News". manoa.hawaii.edu. Archived from the original on 28 October 2019. Retrieved 2019-11-08.
  36. Gorman, Steve (4 August 2009). "Scientists study huge ocean garbage patch". Perthnow.com.au. Archived from the original on 29 January 2011. Retrieved 10 May 2012.
  37. "Scientists find giant plastic rubbish dump floating in the Atlantic". Perthnow.com.au. 26 February 2010. Archived from the original on 14 April 2012. Retrieved 10 May 2012.
  38. Gill, Victoria (24 February 2010). "Plastic rubbish blights Atlantic Ocean". BBC News. Archived from the original on 27 August 2017. Retrieved 10 May 2012.
  39. Orcutt, Mike (2010-08-19). "How Bad Is the Plastic Pollution in the Atlantic?". Popular Mechanics. Archived from the original on 19 August 2014. Retrieved 2019-11-08.
  40. Sigler, Michelle (2014-10-18). "The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions". Water, Air, & Soil Pollution. 225 (11): 2184. Bibcode:2014WASP..225.2184S. doi:10.1007/s11270-014-2184-6. ISSN 1573-2932. S2CID 51944658.
  41. "The garbage patch territory turns into a new state - United Nations Educational, Scientific and Cultural Organization". unesco.org. 22 May 2019. Archived from the original on 11 September 2017. Retrieved 5 November 2014.
  42. "About". The Ocean Cleanup. Archived from the original on 3 March 2021. Retrieved 2019-11-08.
  43. Thompson, R. C.; Olsen, Y.; Mitchell, R. P.; Davis, A.; Rowland, S. J.; John, A. W.; McGonigle, D.; Russell, A. E. (2004). "Lost at Sea: Where is All the Plastic?". Science. 304 (5672): 838. doi:10.1126/science.1094559. PMID 15131299. S2CID 3269482.
  44. Barnes, D. K. A.; Galgani, F.; Thompson, R. C.; Barlaz, M. (2009). "Accumulation and fragmentation of plastic debris in global environments". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1526): 1985–98. doi:10.1098/rstb.2008.0205. JSTOR 40485977. PMC 2873009. PMID 19528051.
  45. Barry, Carolyn (20 August 2009). "Plastic Breaks Down in Ocean, After All – And Fast". National Geographic News. National Geographic Society. Archived from the original on August 26, 2009. Retrieved 30 August 2009.
  46. Royer, Sarah-Jeanne; Ferrón, Sara; Wilson, Samuel T.; Karl, David M. (2018-08-01). "Production of methane and ethylene from plastic in the environment". PLOS ONE. 13 (8): e0200574. Bibcode:2018PLoSO..1300574R. doi:10.1371/journal.pone.0200574. ISSN 1932-6203. PMC 6070199. PMID 30067755.
  47. Wright, Pam (6 June 2017). "UN Ocean Conference: Plastics Dumped In Oceans Could Outweigh Fish by 2050, Secretary-General Says". The Weather Channel. Retrieved 5 May 2018.
  48. Moore, Charles (November 2003). "Across the Pacific Ocean, plastics, plastics, everywhere". Natural History Magazine.
  49. Holmes, Krissy (18 January 2014). "Harbour snow dumping dangerous to environment: biologist". Canadian Broadcasting Corporation.
  50. "Jan Pronk". Public Radio International. Archived from the original on 6 June 2014.
  51. "These 5 Marine Animals Are Dying Because of Our Plastic Trash… Here's How We Can Help". One Green Planet. 2019-04-22. Retrieved 2020-06-10.
  52. Gibbs, Susan E.; Salgado Kent, Chandra P.; Slat, Boyan; Morales, Damien; Fouda, Leila; Reisser, Julia (9 April 2019). "Cetacean sightings within the Great Pacific Garbage Patch". Marine Biodiversity. 49 (4): 2021–27. Bibcode:2019MarBd..49.2021G. doi:10.1007/s12526-019-00952-0.
  53. ^ Sigler, Michelle (2014-10-18). "The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions". Water, Air, & Soil Pollution. 225 (11): 2184. Bibcode:2014WASP..225.2184S. doi:10.1007/s11270-014-2184-6. ISSN 1573-2932. S2CID 51944658.
  54. Perkins, Sid (17 December 2014). "Plastic waste taints the ocean floors". Nature. doi:10.1038/nature.2014.16581. S2CID 138018931.
  55. Handwerk, Brian (2009). "Giant Ocean-Trash Vortex Attracts Explorers". National Geographic. Archived from the original on August 3, 2009.
  56. Ivar Do Sul, Juliana A.; Costa, Monica F. (2014-02-01). "The present and future of microplastic pollution in the marine environment". Environmental Pollution. 185: 352–364. Bibcode:2014EPoll.185..352I. doi:10.1016/j.envpol.2013.10.036. ISSN 0269-7491. PMID 24275078.
  57. ^ "Marine Plastics". Smithsonian Ocean. 30 April 2018. Retrieved 2019-11-08.
  58. Kaiser, Jocelyn (2010-06-18). "The Dirt on Ocean Garbage Patches". Science. 328 (5985): 1506. Bibcode:2010Sci...328.1506K. doi:10.1126/science.328.5985.1506. ISSN 0036-8075. PMID 20558704.
  59. "Plastic pollution found inside dead seabirds". www.scotsman.com. Retrieved 2019-11-08.
  60. "Pygmy sperm whale died in Halifax Harbour after eating plastic". CBC News. 16 March 2015.
  61. Lavers, Jennifer L.; Bond, Alexander L. (2017). "Exceptional and rapid accumulation of anthropogenic debris on one of the world's most remote and pristine islands". Proceedings of the National Academy of Sciences. 114 (23): 6052–6055. Bibcode:2017PNAS..114.6052L. doi:10.1073/pnas.1619818114. PMC 5468685. PMID 28507128.
  62. Cooper, Dani (16 May 2017). "Remote South Pacific island has highest levels of plastic rubbish in the world". ABC News Online.
  63. Hunt, Elle (15 May 2017). "38 million pieces of plastic waste found on uninhabited South Pacific island". The Guardian. Retrieved 16 May 2017.
  64. "No one lives on this remote Pacific island – but it's covered in 38 million pieces of our trash". The Washington Post. Retrieved 16 May 2017.
Marine pollution
Ocean currents and gyres
Currents
Arctic Ocean
Atlantic Ocean
Indian Ocean
Pacific Ocean
Southern Ocean
Gyres
Major gyres
Other gyres
Related
icon Environment portal  icon Oceans portal
Categories: