(Redirected from Gaussian-Wishart distribution )
Normal-Wishart Notation
(
μ
,
Λ
)
∼
N
W
(
μ
0
,
λ
,
W
,
ν
)
{\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )}
Parameters
μ
0
∈
R
D
{\displaystyle {\boldsymbol {\mu }}_{0}\in \mathbb {R} ^{D}\,}
location (vector of real )
λ
>
0
{\displaystyle \lambda >0\,}
(real)
W
∈
R
D
×
D
{\displaystyle \mathbf {W} \in \mathbb {R} ^{D\times D}}
scale matrix (pos. def. )
ν
>
D
−
1
{\displaystyle \nu >D-1\,}
(real) Support
μ
∈
R
D
;
Λ
∈
R
D
×
D
{\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{D};{\boldsymbol {\Lambda }}\in \mathbb {R} ^{D\times D}}
covariance matrix (pos. def. ) PDF
f
(
μ
,
Λ
|
μ
0
,
λ
,
W
,
ν
)
=
N
(
μ
|
μ
0
,
(
λ
Λ
)
−
1
)
W
(
Λ
|
W
,
ν
)
{\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Lambda }}|{\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})\ {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}
In probability theory and statistics , the normal-Wishart distribution (or Gaussian-Wishart distribution ) is a multivariate four-parameter family of continuous probability distributions . It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix ).
Definition
Suppose
μ
|
μ
0
,
λ
,
Λ
∼
N
(
μ
0
,
(
λ
Λ
)
−
1
)
{\displaystyle {\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Lambda }}\sim {\mathcal {N}}({\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})}
has a multivariate normal distribution with mean
μ
0
{\displaystyle {\boldsymbol {\mu }}_{0}}
and covariance matrix
(
λ
Λ
)
−
1
{\displaystyle (\lambda {\boldsymbol {\Lambda }})^{-1}}
, where
Λ
|
W
,
ν
∼
W
(
Λ
|
W
,
ν
)
{\displaystyle {\boldsymbol {\Lambda }}|\mathbf {W} ,\nu \sim {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}
has a Wishart distribution . Then
(
μ
,
Λ
)
{\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})}
has a normal-Wishart distribution, denoted as
(
μ
,
Λ
)
∼
N
W
(
μ
0
,
λ
,
W
,
ν
)
.
{\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu ).}
Characterization
Probability density function
f
(
μ
,
Λ
|
μ
0
,
λ
,
W
,
ν
)
=
N
(
μ
|
μ
0
,
(
λ
Λ
)
−
1
)
W
(
Λ
|
W
,
ν
)
{\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Lambda }}|{\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})\ {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}
Properties
Scaling
Marginal distributions
By construction, the marginal distribution over
Λ
{\displaystyle {\boldsymbol {\Lambda }}}
is a Wishart distribution , and the conditional distribution over
μ
{\displaystyle {\boldsymbol {\mu }}}
given
Λ
{\displaystyle {\boldsymbol {\Lambda }}}
is a multivariate normal distribution . The marginal distribution over
μ
{\displaystyle {\boldsymbol {\mu }}}
is a multivariate t -distribution .
Posterior distribution of the parameters
After making
n
{\displaystyle n}
observations
x
1
,
…
,
x
n
{\displaystyle {\boldsymbol {x}}_{1},\dots ,{\boldsymbol {x}}_{n}}
, the posterior distribution of the parameters is
(
μ
,
Λ
)
∼
N
W
(
μ
n
,
λ
n
,
W
n
,
ν
n
)
,
{\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{n},\lambda _{n},\mathbf {W} _{n},\nu _{n}),}
where
λ
n
=
λ
+
n
,
{\displaystyle \lambda _{n}=\lambda +n,}
μ
n
=
λ
μ
0
+
n
x
¯
λ
+
n
,
{\displaystyle {\boldsymbol {\mu }}_{n}={\frac {\lambda {\boldsymbol {\mu }}_{0}+n{\boldsymbol {\bar {x}}}}{\lambda +n}},}
ν
n
=
ν
+
n
,
{\displaystyle \nu _{n}=\nu +n,}
W
n
−
1
=
W
−
1
+
∑
i
=
1
n
(
x
i
−
x
¯
)
(
x
i
−
x
¯
)
T
+
n
λ
n
+
λ
(
x
¯
−
μ
0
)
(
x
¯
−
μ
0
)
T
.
{\displaystyle \mathbf {W} _{n}^{-1}=\mathbf {W} ^{-1}+\sum _{i=1}^{n}({\boldsymbol {x}}_{i}-{\boldsymbol {\bar {x}}})({\boldsymbol {x}}_{i}-{\boldsymbol {\bar {x}}})^{T}+{\frac {n\lambda }{n+\lambda }}({\boldsymbol {\bar {x}}}-{\boldsymbol {\mu }}_{0})({\boldsymbol {\bar {x}}}-{\boldsymbol {\mu }}_{0})^{T}.}
Generating normal-Wishart random variates
Generation of random variates is straightforward:
Sample
Λ
{\displaystyle {\boldsymbol {\Lambda }}}
from a Wishart distribution with parameters
W
{\displaystyle \mathbf {W} }
and
ν
{\displaystyle \nu }
Sample
μ
{\displaystyle {\boldsymbol {\mu }}}
from a multivariate normal distribution with mean
μ
0
{\displaystyle {\boldsymbol {\mu }}_{0}}
and variance
(
λ
Λ
)
−
1
{\displaystyle (\lambda {\boldsymbol {\Lambda }})^{-1}}
Related distributions
Notes
Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media. Page 690.
Cross Validated, https://stats.stackexchange.com/q/324925
References
Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑