Misplaced Pages

Normal-Wishart distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Gaussian-Wishart distribution)
Normal-Wishart
Notation ( μ , Λ ) N W ( μ 0 , λ , W , ν ) {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )}
Parameters μ 0 R D {\displaystyle {\boldsymbol {\mu }}_{0}\in \mathbb {R} ^{D}\,} location (vector of real)
λ > 0 {\displaystyle \lambda >0\,} (real)
W R D × D {\displaystyle \mathbf {W} \in \mathbb {R} ^{D\times D}} scale matrix (pos. def.)
ν > D 1 {\displaystyle \nu >D-1\,} (real)
Support μ R D ; Λ R D × D {\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{D};{\boldsymbol {\Lambda }}\in \mathbb {R} ^{D\times D}} covariance matrix (pos. def.)
PDF f ( μ , Λ | μ 0 , λ , W , ν ) = N ( μ | μ 0 , ( λ Λ ) 1 )   W ( Λ | W , ν ) {\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Lambda }}|{\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})\ {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}

In probability theory and statistics, the normal-Wishart distribution (or Gaussian-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and precision matrix (the inverse of the covariance matrix).

Definition

Suppose

μ | μ 0 , λ , Λ N ( μ 0 , ( λ Λ ) 1 ) {\displaystyle {\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Lambda }}\sim {\mathcal {N}}({\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})}

has a multivariate normal distribution with mean μ 0 {\displaystyle {\boldsymbol {\mu }}_{0}} and covariance matrix ( λ Λ ) 1 {\displaystyle (\lambda {\boldsymbol {\Lambda }})^{-1}} , where

Λ | W , ν W ( Λ | W , ν ) {\displaystyle {\boldsymbol {\Lambda }}|\mathbf {W} ,\nu \sim {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}

has a Wishart distribution. Then ( μ , Λ ) {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})} has a normal-Wishart distribution, denoted as

( μ , Λ ) N W ( μ 0 , λ , W , ν ) . {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu ).}

Characterization

Probability density function

f ( μ , Λ | μ 0 , λ , W , ν ) = N ( μ | μ 0 , ( λ Λ ) 1 )   W ( Λ | W , ν ) {\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Lambda }}|{\boldsymbol {\mu }}_{0},\lambda ,\mathbf {W} ,\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},(\lambda {\boldsymbol {\Lambda }})^{-1})\ {\mathcal {W}}({\boldsymbol {\Lambda }}|\mathbf {W} ,\nu )}

Properties

Scaling

Marginal distributions

By construction, the marginal distribution over Λ {\displaystyle {\boldsymbol {\Lambda }}} is a Wishart distribution, and the conditional distribution over μ {\displaystyle {\boldsymbol {\mu }}} given Λ {\displaystyle {\boldsymbol {\Lambda }}} is a multivariate normal distribution. The marginal distribution over μ {\displaystyle {\boldsymbol {\mu }}} is a multivariate t-distribution.

Posterior distribution of the parameters

After making n {\displaystyle n} observations x 1 , , x n {\displaystyle {\boldsymbol {x}}_{1},\dots ,{\boldsymbol {x}}_{n}} , the posterior distribution of the parameters is

( μ , Λ ) N W ( μ n , λ n , W n , ν n ) , {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Lambda }})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{n},\lambda _{n},\mathbf {W} _{n},\nu _{n}),}

where

λ n = λ + n , {\displaystyle \lambda _{n}=\lambda +n,}
μ n = λ μ 0 + n x ¯ λ + n , {\displaystyle {\boldsymbol {\mu }}_{n}={\frac {\lambda {\boldsymbol {\mu }}_{0}+n{\boldsymbol {\bar {x}}}}{\lambda +n}},}
ν n = ν + n , {\displaystyle \nu _{n}=\nu +n,}
W n 1 = W 1 + i = 1 n ( x i x ¯ ) ( x i x ¯ ) T + n λ n + λ ( x ¯ μ 0 ) ( x ¯ μ 0 ) T . {\displaystyle \mathbf {W} _{n}^{-1}=\mathbf {W} ^{-1}+\sum _{i=1}^{n}({\boldsymbol {x}}_{i}-{\boldsymbol {\bar {x}}})({\boldsymbol {x}}_{i}-{\boldsymbol {\bar {x}}})^{T}+{\frac {n\lambda }{n+\lambda }}({\boldsymbol {\bar {x}}}-{\boldsymbol {\mu }}_{0})({\boldsymbol {\bar {x}}}-{\boldsymbol {\mu }}_{0})^{T}.}

Generating normal-Wishart random variates

Generation of random variates is straightforward:

  1. Sample Λ {\displaystyle {\boldsymbol {\Lambda }}} from a Wishart distribution with parameters W {\displaystyle \mathbf {W} } and ν {\displaystyle \nu }
  2. Sample μ {\displaystyle {\boldsymbol {\mu }}} from a multivariate normal distribution with mean μ 0 {\displaystyle {\boldsymbol {\mu }}_{0}} and variance ( λ Λ ) 1 {\displaystyle (\lambda {\boldsymbol {\Lambda }})^{-1}}

Related distributions

Notes

  1. Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media. Page 690.
  2. Cross Validated, https://stats.stackexchange.com/q/324925

References

  • Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: