Misplaced Pages

Geranylacetone

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Geranylacetone
Names
Preferred IUPAC name (5E)-6,10-Dimethylundeca-5,9-dien-2-one
Other names 6,10-dimethyl-(5E)-5,9-undecadien-2-one, (E)-geranylacetone
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.021.155 Edit this at Wikidata
EC Number
  • 223-269-8
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C13H22O/c1-11(2)7-5-8-12(3)9-6-10-13(4)14/h7,9H,5-6,8,10H2,1-4H3/b12-9+Key: HNZUNIKWNYHEJJ-FMIVXFBMSA-N
SMILES
  • CC(=CCC/C(=C/CCC(=O)C)/C)C
Properties
Chemical formula C13H22O
Molar mass 194.318 g·mol
Density 0.8698 g/cm (20 °C)
Boiling point 126–8 °C (259–46 °F; 399–281 K) 10 mm Hg
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS09: Environmental hazard
Signal word Warning
Hazard statements H315, H411
Precautionary statements P264, P273, P280, P302+P352, P321, P332+P313, P362, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Geranylacetone is an organic compound with the formula CH3C(O)(CH2)2CH=C(CH3)(CH2)2CH=C(CH3)2. A colorless oil, it is the product of coupling geranyl and acetonyl groups. It is a precursor to synthetic squalene.

Synthesis and occurrence

Geranylacetone can be produced by transesterification of ethyl acetoacetate with linalool:

EtOC(O)CH2C(O)CH3 + C10H17OH → C10H17OC(O)CH2C(O)CH3 + EtOH

The esterification of linalool can also be effected with ketene or isopropenyl methyl ether. The resulting linalyl ester undergoes Carroll rearrangement to give geranylacetone. Geranyl acetone is a precursor to isophytol, which is used in the manufacture of Vitamin E. Other derivatives of geranyl acetone are farnesol and nerolidol.

Geranylacetone is a flavor component of many plants including rice, mango, and tomatoes.

Together with other ketones, geranylacetone results from the degradation of vegetable matter by ozone.

Biosynthesis

It arises by the oxidation of certain carotenoids. Such reaction are catalyzed by carotenoid oxygenase.

References

  1. Eggersdorfer, Manfred (2000). "Terpenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_205. ISBN 978-3527306732.
  2. Sell, Charles S. (2006). "Terpenoids". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.2005181602120504.a01.pub2. ISBN 0471238961.
  3. Pino, Jorge A.; Mesa, Judith; Muñoz, Yamilie; Martí, M. Pilar; Marbot, Rolando (2005). "Volatile Components from Mango (Mangifera indica L.) Cultivars". Journal of Agricultural and Food Chemistry. 53 (6): 2213–2223. doi:10.1021/jf0402633. PMID 15769159.
  4. Fruekilde, P.; Hjorth, J.; Jensen, N.R.; Kotzias, D.; Larsen, B. (1998). "Ozonolysis at Vegetation Surfaces". Atmospheric Environment. 32 (11): 1893–1902. doi:10.1016/S1352-2310(97)00485-8.
  5. Simkin, Andrew J.; Schwartz, Steven H.; Auldridge, Michele; Taylor, Mark G.; Klee, Harry J. (2004). "The Tomato Carotenoid Cleavage Dioxygenase 1 Genes Contribute to the Formation of the Flavor Volatiles β-Ionone, Pseudoionone, and Geranylacetone". The Plant Journal. 40 (6): 882–892. doi:10.1111/j.1365-313X.2004.02263.x. PMID 15584954.
Categories: