This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2012) (Learn how and when to remove this message) |
In mathematics, the Gibbons–Hawking ansatz is a method of constructing gravitational instantons introduced by Gary Gibbons and Stephen Hawking (1978, 1979). It gives examples of hyperkähler manifolds in dimension 4 that are invariant under a circle action.
See also
References
- Gibbons, G.W.; Hawking, S. W. (1978), "Gravitational multi-instantons", Physics Letters B, 78 (4): 430–432, Bibcode:1978PhLB...78..430G, doi:10.1016/0370-2693(78)90478-1, ISSN 0370-2693
- Gibbons, G. W.; Hawking, S. W. (1979), "Classification of gravitational instanton symmetries", Communications in Mathematical Physics, 66 (3): 291–310, Bibcode:1979CMaPh..66..291G, doi:10.1007/bf01197189, ISSN 0010-3616, MR 0535152, S2CID 123183399
- Gonzalo Pérez, Jesús; Geiges, Hansjörg (2010), "A homogeneous Gibbons–Hawking ansatz and Blaschke products", Advances in Mathematics, 225 (5): 2598–2615, arXiv:0807.0086, doi:10.1016/j.aim.2010.05.006, ISSN 0001-8708, MR 2680177
This relativity-related article is a stub. You can help Misplaced Pages by expanding it. |