Misplaced Pages

Heegner point

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Gross–Zagier formula)
You can help expand this article with text translated from the corresponding article in German. Click for important translation instructions.
  • View a machine-translated version of the German article.
  • Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Misplaced Pages.
  • Consider adding a topic to this template: there are already 2,148 articles in the main category, and specifying|topic= will aid in categorization.
  • Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
  • You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing German Misplaced Pages article at ]; see its history for attribution.
  • You may also add the template {{Translated|de|Heegner-Punkt}} to the talk page.
  • For more guidance, see Misplaced Pages:Translation.

In mathematics, a Heegner point is a point on a modular curve that is the image of a quadratic imaginary point of the upper half-plane. They were defined by Bryan Birch and named after Kurt Heegner, who used similar ideas to prove Gauss's conjecture on imaginary quadratic fields of class number one.

Gross–Zagier theorem

The Gross–Zagier theorem (Gross & Zagier 1986) describes the height of Heegner points in terms of a derivative of the L-function of the elliptic curve at the point s = 1. In particular if the elliptic curve has (analytic) rank 1, then the Heegner points can be used to construct a rational point on the curve of infinite order (so the Mordell–Weil group has rank at least 1). More generally, Gross, Kohnen & Zagier (1987) showed that Heegner points could be used to construct rational points on the curve for each positive integer n, and the heights of these points were the coefficients of a modular form of weight 3/2. Shou-Wu Zhang generalized the Gross–Zagier theorem from elliptic curves to the case of modular abelian varieties (Zhang 2001, 2004, Yuan, Zhang & Zhang 2009).

Birch and Swinnerton-Dyer conjecture

Kolyvagin later used Heegner points to construct Euler systems, and used this to prove much of the Birch–Swinnerton-Dyer conjecture for rank 1 elliptic curves. Brown proved the Birch–Swinnerton-Dyer conjecture for most rank 1 elliptic curves over global fields of positive characteristic (Brown 1994).

Computation

Heegner points can be used to compute very large rational points on rank 1 elliptic curves (see (Watkins 2006) for a survey) that could not be found by naive methods. Implementations of the algorithm are available in Magma, PARI/GP, and Sage.

References

Categories: