Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
In quantum computation, the Hadamard test is a method used to create a random variable whose expected value is the expected real part , where is a quantum state and is a unitary gate acting on the space of . The Hadamard test produces a random variable whose image is in and whose expected value is exactly . It is possible to modify the circuit to produce a random variable whose expected value is by applying an gate after the first Hadamard gate.
Description of the circuit
To perform the Hadamard test we first calculate the state . We then apply the unitary operator on conditioned on the first qubit to obtain the state . We then apply the Hadamard gate to the first qubit, yielding .
Measuring the first qubit, the result is with probability , in which case we output . The result is with probability , in which case we output . The expected value of the output will then be the difference between the two probabilities, which is
To obtain a random variable whose expectation is follow exactly the same procedure but start with .
The Hadamard test has many applications in quantum algorithms such as the Aharonov-Jones-Landau algorithm.
Via a very simple modification it can be used to compute inner product between two states and : instead of starting from a state it suffice to start from the ground state , and perform two controlled operations on the ancilla qubit. Controlled on the ancilla register being , we apply the unitary that produces in the second register, and controlled on the ancilla register being in the state , we create in the second register. The expected value of the measurements of the ancilla qubits leads to an estimate of . The number of samples needed to estimate the expected value with absolute error is , because of a Chernoff bound. This value can be improved to using amplitude estimation techniques.