Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Relation between the side lengths and angles of a spherical triangle
For a triangle on a sphere, the half-side formula is
where a, b, c are the angular lengths (measure of central angle, arc lengths normalized to a sphere of unit radius) of the sides opposite angles A, B, C respectively, and is half the sum of the angles. Two more formulas can be obtained for and by permuting the labels
The polar dual relationship for a spherical triangle is the half-angle formula,
where semiperimeter is half the sum of the sides. Again, two more formulas can be obtained by permuting the labels
Half-tangent variant
The same relationships can be written as rational equations of half-tangents (tangents of half-angles). If and then the half-side formula is equivalent to: