Misplaced Pages

Hardy's inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Hardy's inequality is an inequality in mathematics, named after G. H. Hardy.

Its discrete version states that if a 1 , a 2 , a 3 , {\displaystyle a_{1},a_{2},a_{3},\dots } is a sequence of non-negative real numbers, then for every real number p > 1 one has

n = 1 ( a 1 + a 2 + + a n n ) p ( p p 1 ) p n = 1 a n p . {\displaystyle \sum _{n=1}^{\infty }\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{\infty }a_{n}^{p}.}

If the right-hand side is finite, equality holds if and only if a n = 0 {\displaystyle a_{n}=0} for all n.

An integral version of Hardy's inequality states the following: if f is a measurable function with non-negative values, then

0 ( 1 x 0 x f ( t ) d t ) p d x ( p p 1 ) p 0 f ( x ) p d x . {\displaystyle \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx\leq \left({\frac {p}{p-1}}\right)^{p}\int _{0}^{\infty }f(x)^{p}\,dx.}

If the right-hand side is finite, equality holds if and only if f(x) = 0 almost everywhere.

Hardy's inequality was first published and proved (at least the discrete version with a worse constant) in 1920 in a note by Hardy. The original formulation was in an integral form slightly different from the above.

Statements

General discrete Hardy inequality

The general weighted one dimensional version reads as follows:: if a n 0 {\displaystyle a_{n}\geq 0} , λ n > 0 {\displaystyle \lambda _{n}>0} and p > 1 {\displaystyle p>1} ,

n = 1 λ n ( λ 1 a 1 + + λ n a n λ 1 + + λ n ) p ( p p 1 ) p n = 1 λ n a n p . {\displaystyle \sum _{n=1}^{\infty }\lambda _{n}{\Bigl (}{\frac {\lambda _{1}a_{1}+\dotsb +\lambda _{n}a_{n}}{\lambda _{1}+\dotsb +\lambda _{n}}}{\Bigr )}^{p}\leq {\Bigl (}{\frac {p}{p-1}}{\Bigr )}^{p}\sum _{n=1}^{\infty }\lambda _{n}a_{n}^{p}.}

General one-dimensional integral Hardy inequality

The general weighted one dimensional version reads as follows:

  • If α + 1 p < 1 {\displaystyle \alpha +{\tfrac {1}{p}}<1} , then
0 ( y α 1 0 y x α f ( x ) d x ) p d y 1 ( 1 α 1 p ) p 0 f ( x ) p d x {\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{0}^{y}x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}1-\alpha -{\frac {1}{p}}{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx}
  • If α + 1 p > 1 {\displaystyle \alpha +{\tfrac {1}{p}}>1} , then
0 ( y α 1 y x α f ( x ) d x ) p d y 1 ( α + 1 p 1 ) p 0 f ( x ) p d x . {\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{y}^{\infty }x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}\alpha +{\frac {1}{p}}-1{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx.}

Multidimensional Hardy inequalities with gradient

Multidimensional Hardy inequality around a point

In the multidimensional case, Hardy's inequality can be extended to L p {\displaystyle L^{p}} -spaces, taking the form

f L p ( R n ) p n p f L p ( R n ) , 2 n , 1 p < n , {\displaystyle \left\|{\frac {f}{\cdot }}\right\|_{L^{p}(\mathbb {R} ^{n})}\leq {\frac {p}{n-p}}\|\nabla f\|_{L^{p}(\mathbb {R} ^{n})},2\leq n,1\leq p<n,}

where f C c ( R n ) {\displaystyle f\in C_{c}^{\infty }(\mathbb {R} ^{n})} , and where the constant p n p {\displaystyle {\frac {p}{n-p}}} is known to be sharp; by density it extends then to the Sobolev space W 1 , p ( R n ) {\displaystyle W^{1,p}(\mathbb {R} ^{n})} .

Similarly, if p > n 2 {\displaystyle p>n\geq 2} , then one has for every f C c ( R n ) {\displaystyle f\in C_{c}^{\infty }(\mathbb {R} ^{n})}

( 1 n p ) p R n | f ( x ) f ( 0 ) | p | x | p d x R n | f | p . {\displaystyle {\Big (}1-{\frac {n}{p}}{\Big )}^{p}\int _{\mathbb {R} ^{n}}{\frac {\vert f(x)-f(0)\vert ^{p}}{|x|^{p}}}dx\leq \int _{\mathbb {R} ^{n}}\vert \nabla f\vert ^{p}.}

Multidimensional Hardy inequality near the boundary

If Ω R n {\displaystyle \Omega \subsetneq \mathbb {R} ^{n}} is an nonempty convex open set, then for every f W 1 , p ( Ω ) {\displaystyle f\in W^{1,p}(\Omega )} ,

( 1 1 p ) p Ω | f ( x ) | p dist ( x , Ω ) p d x Ω | f | p , {\displaystyle {\Big (}1-{\frac {1}{p}}{\Big )}^{p}\int _{\Omega }{\frac {\vert f(x)\vert ^{p}}{\operatorname {dist} (x,\partial \Omega )^{p}}}\,dx\leq \int _{\Omega }\vert \nabla f\vert ^{p},}

and the constant cannot be improved.

Fractional Hardy inequality

If 1 p < {\displaystyle 1\leq p<\infty } and 0 < λ < {\displaystyle 0<\lambda <\infty } , λ 1 {\displaystyle \lambda \neq 1} , there exists a constant C {\displaystyle C} such that for every f : ( 0 , ) R {\displaystyle f:(0,\infty )\to \mathbb {R} } satisfying 0 | f ( x ) | p / x λ d x < {\displaystyle \int _{0}^{\infty }\vert f(x)\vert ^{p}/x^{\lambda }\,dx<\infty } , one has

0 | f ( x ) | p x λ d x C 0 0 | f ( x ) f ( y ) | p | x y | 1 + λ d x d y . {\displaystyle \int _{0}^{\infty }{\frac {\vert f(x)\vert ^{p}}{x^{\lambda }}}\,dx\leq C\int _{0}^{\infty }\int _{0}^{\infty }{\frac {\vert f(x)-f(y)\vert ^{p}}{\vert x-y\vert ^{1+\lambda }}}\,dx\,dy.}

Proof of the inequality

Integral version (integration by parts and Hölder)

Hardy’s original proof begins with an integration by parts to get

0 ( 1 x 0 x f ( t ) d t ) p d x = 0 ( 0 x f ( t ) d t ) p 1 x p d x = p p 1 0 ( 0 x f ( t ) d t ) p 1 f ( x ) x p 1 d x = p p 1 0 ( 1 x 0 x f ( t ) d t ) p 1 f ( x ) d x {\displaystyle \int _{0}^{\infty }{\Bigl (}{\frac {1}{x}}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p}dx=\int _{0}^{\infty }{\Bigl (}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p}{\frac {1}{x^{p}}}dx={\frac {p}{p-1}}\int _{0}^{\infty }{\Bigl (}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p-1}{\frac {f(x)}{x^{p-1}}}dx={\frac {p}{p-1}}\int _{0}^{\infty }{\Bigl (}{\frac {1}{x}}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p-1}f(x)dx}

Then, by Hölder's inequality,

0 ( 1 x 0 x f ( t ) d t ) p d x p p 1 ( 0 ( 1 x 0 x f ( t ) d t ) p d x ) 1 1 p ( 0 f ( x ) p d x ) 1 p , {\displaystyle \int _{0}^{\infty }{\Bigl (}{\frac {1}{x}}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p}dx\leq {\frac {p}{p-1}}{\Bigl (}\int _{0}^{\infty }{\Bigl (}{\frac {1}{x}}\int _{0}^{x}f(t)\,dt{\Bigr )}^{p}dx{\Bigr )}^{1-{\frac {1}{p}}}{\Bigl (}\int _{0}^{\infty }f(x)^{p}\,dx{\Bigr )}^{\frac {1}{p}},}

and the conclusion follows.

Integral version (scaling and Minkowski)

A change of variables gives

( 0 ( 1 x 0 x f ( t ) d t ) p   d x ) 1 / p = ( 0 ( 0 1 f ( s x ) d s ) p d x ) 1 / p , {\displaystyle \left(\int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\ dx\right)^{1/p}=\left(\int _{0}^{\infty }\left(\int _{0}^{1}f(sx)\,ds\right)^{p}\,dx\right)^{1/p},}

which is less or equal than 0 1 ( 0 f ( s x ) p d x ) 1 / p d s {\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(sx)^{p}\,dx\right)^{1/p}\,ds} by Minkowski's integral inequality. Finally, by another change of variables, the last expression equals

0 1 ( 0 f ( x ) p d x ) 1 / p s 1 / p d s = p p 1 ( 0 f ( x ) p d x ) 1 / p . {\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}s^{-1/p}\,ds={\frac {p}{p-1}}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}.}

Discrete version: from the continuous version

Assuming the right-hand side to be finite, we must have a n 0 {\displaystyle a_{n}\to 0} as n {\displaystyle n\to \infty } . Hence, for any positive integer j, there are only finitely many terms bigger than 2 j {\displaystyle 2^{-j}} . This allows us to construct a decreasing sequence b 1 b 2 {\displaystyle b_{1}\geq b_{2}\geq \dotsb } containing the same positive terms as the original sequence (but possibly no zero terms). Since a 1 + a 2 + + a n b 1 + b 2 + + b n {\displaystyle a_{1}+a_{2}+\dotsb +a_{n}\leq b_{1}+b_{2}+\dotsb +b_{n}} for every n, it suffices to show the inequality for the new sequence. This follows directly from the integral form, defining f ( x ) = b n {\displaystyle f(x)=b_{n}} if n 1 < x < n {\displaystyle n-1<x<n} and f ( x ) = 0 {\displaystyle f(x)=0} otherwise. Indeed, one has

0 f ( x ) p d x = n = 1 b n p {\displaystyle \int _{0}^{\infty }f(x)^{p}\,dx=\sum _{n=1}^{\infty }b_{n}^{p}}

and, for n 1 < x < n {\displaystyle n-1<x<n} , there holds

1 x 0 x f ( t ) d t = b 1 + + b n 1 + ( x n + 1 ) b n x b 1 + + b n n {\displaystyle {\frac {1}{x}}\int _{0}^{x}f(t)\,dt={\frac {b_{1}+\dots +b_{n-1}+(x-n+1)b_{n}}{x}}\geq {\frac {b_{1}+\dots +b_{n}}{n}}}

(the last inequality is equivalent to ( n x ) ( b 1 + + b n 1 ) ( n 1 ) ( n x ) b n {\displaystyle (n-x)(b_{1}+\dots +b_{n-1})\geq (n-1)(n-x)b_{n}} , which is true as the new sequence is decreasing) and thus

n = 1 ( b 1 + + b n n ) p 0 ( 1 x 0 x f ( t ) d t ) p d x {\displaystyle \sum _{n=1}^{\infty }\left({\frac {b_{1}+\dots +b_{n}}{n}}\right)^{p}\leq \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx} .

Discrete version: Direct proof

Let p > 1 {\displaystyle p>1} and let b 1 , , b n {\displaystyle b_{1},\dots ,b_{n}} be positive real numbers. Set S k = i = 1 k b i {\displaystyle S_{k}=\sum _{i=1}^{k}b_{i}} . First we prove the inequality

n = 1 N S n p n p p p 1 n = 1 N b n S n p 1 n p 1 , {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}},} *

Let T n = S n n {\displaystyle T_{n}={\frac {S_{n}}{n}}} and let Δ n {\displaystyle \Delta _{n}} be the difference between the n {\displaystyle n} -th terms in the right-hand side and left-hand side of *, that is, Δ n := T n p p p 1 b n T n p 1 {\displaystyle \Delta _{n}:=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}} . We have:

Δ n = T n p p p 1 b n T n p 1 = T n p p p 1 ( n T n ( n 1 ) T n 1 ) T n p 1 {\displaystyle \Delta _{n}=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}=T_{n}^{p}-{\frac {p}{p-1}}(nT_{n}-(n-1)T_{n-1})T_{n}^{p-1}}

or

Δ n = T n p ( 1 n p p 1 ) + p ( n 1 ) p 1 T n 1 T n p . {\displaystyle \Delta _{n}=T_{n}^{p}\left(1-{\frac {np}{p-1}}\right)+{\frac {p(n-1)}{p-1}}T_{n-1}T_{n}^{p}.}

According to Young's inequality we have:

T n 1 T n p 1 T n 1 p p + ( p 1 ) T n p p , {\displaystyle T_{n-1}T_{n}^{p-1}\leq {\frac {T_{n-1}^{p}}{p}}+(p-1){\frac {T_{n}^{p}}{p}},}

from which it follows that:

Δ n n 1 p 1 T n 1 p n p 1 T n p . {\displaystyle \Delta _{n}\leq {\frac {n-1}{p-1}}T_{n-1}^{p}-{\frac {n}{p-1}}T_{n}^{p}.}

By telescoping we have:

n = 1 N Δ n 0 1 p 1 T 1 p + 1 p 1 T 1 p 2 p 1 T 2 p + 2 p 1 T 2 p 3 p 1 T 3 p + + N 1 p 1 T N 1 p N p 1 T N p = N p 1 T N p < 0 , {\displaystyle {\begin{aligned}\sum _{n=1}^{N}\Delta _{n}&\leq 0-{\frac {1}{p-1}}T_{1}^{p}+{\frac {1}{p-1}}T_{1}^{p}-{\frac {2}{p-1}}T_{2}^{p}+{\frac {2}{p-1}}T_{2}^{p}-{\frac {3}{p-1}}T_{3}^{p}+\dotsb +{\frac {N-1}{p-1}}T_{N-1}^{p}-{\frac {N}{p-1}}T_{N}^{p}\\&=-{\frac {N}{p-1}}T_{N}^{p}<0,\end{aligned}}}

proving *. Applying Hölder's inequality to the right-hand side of * we have:

n = 1 N S n p n p p p 1 n = 1 N b n S n p 1 n p 1 p p 1 ( n = 1 N b n p ) 1 / p ( n = 1 N S n p n p ) ( p 1 ) / p {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}}\leq {\frac {p}{p-1}}\left(\sum _{n=1}^{N}b_{n}^{p}\right)^{1/p}\left(\sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\right)^{(p-1)/p}}

from which we immediately obtain:

n = 1 N S n p n p ( p p 1 ) p n = 1 N b n p . {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{N}b_{n}^{p}.}

Letting N {\displaystyle N\rightarrow \infty } we obtain Hardy's inequality.

See also

Notes

  1. ^ Hardy, G. H. (1920). "Note on a theorem of Hilbert". Mathematische Zeitschrift. 6 (3–4): 314–317. doi:10.1007/BF01199965. S2CID 122571449.
  2. ^ Hardy, G. H.; Littlewood, J.E.; Pólya, G. (1952). Inequalities (Second ed.). Cambridge, UK.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Birkhäuser Basel. ISBN 978-3-030-02894-7.
  4. Marcus, Moshe; Mizel, Victor J.; Pinchover, Yehuda (1998). "On the best constant for Hardy's inequality in $\mathbb {R}^n$". Transactions of the American Mathematical Society. 350 (8): 3237–3255. doi:10.1090/S0002-9947-98-02122-9.
  5. Mironescu, Petru (2018). "The role of the Hardy type inequalities in the theory of function spaces" (PDF). Revue roumaine de mathématiques pures et appliquées. 63 (4): 447–525.

References

  • Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952). Inequalities (2nd ed.). Cambridge University Press. ISBN 0-521-35880-9.
  • Kufner, Alois; Persson, Lars-Erik (2003). Weighted inequalities of Hardy type. World Scientific Publishing. ISBN 981-238-195-3.
  • Masmoudi, Nader (2011), "About the Hardy Inequality", in Dierk Schleicher; Malte Lackmann (eds.), An Invitation to Mathematics, Springer Berlin Heidelberg, ISBN 978-3-642-19533-4.
  • Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Birkhäuser Basel. ISBN 978-3-030-02895-4.

External links

Categories: