Misplaced Pages

Herglotz–Zagier function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Herglotz–Zagier function, named after Gustav Herglotz and Don Zagier, is the function

F ( x ) = n = 1 { Γ ( n x ) Γ ( n x ) log ( n x ) } 1 n . {\displaystyle F(x)=\sum _{n=1}^{\infty }\left\{{\frac {\Gamma ^{\prime }(nx)}{\Gamma (nx)}}-\log(nx)\right\}{\frac {1}{n}}.}

introduced by Zagier (1975) who used it to obtain a Kronecker limit formula for real quadratic fields.

References

  1. Masri, Riad (2004), "The Herglotz–Zagier function, double zeta functions, and values of L-series", Journal of Number Theory, 106 (2): 219–237, doi:10.1016/j.jnt.2004.01.004, ISSN 0022-314X, MR 2059072
  2. Herglotz, G. (1923), "Über die Kroneckersche Grenzformel für reelle, quadratische Körper", Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 75: 3–14, JFM 49.0125.03
  3. ^ Zagier, Don (1975), "A Kronecker limit formula for real quadratic fields", Mathematische Annalen, 213 (2): 153–184, doi:10.1007/BF01343950, ISSN 0025-5831, MR 0366877, S2CID 54539768
Category: