Misplaced Pages

Hermite transform

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials H n ( x ) {\displaystyle H_{n}(x)} as kernels of the transform.

The Hermite transform H { F ( x ) } f H ( n ) {\displaystyle H\{F(x)\}\equiv f_{H}(n)} of a function F ( x ) {\displaystyle F(x)} is H { F ( x ) } f H ( n ) = e x 2   H n ( x )   F ( x )   d x {\displaystyle H\{F(x)\}\equiv f_{H}(n)=\int _{-\infty }^{\infty }e^{-x^{2}}\ H_{n}(x)\ F(x)\ dx}

The inverse Hermite transform H 1 { f H ( n ) } {\displaystyle H^{-1}\{f_{H}(n)\}} is given by H 1 { f H ( n ) } F ( x ) = n = 0 1 π 2 n n ! f H ( n ) H n ( x ) {\displaystyle H^{-1}\{f_{H}(n)\}\equiv F(x)=\sum _{n=0}^{\infty }{\frac {1}{{\sqrt {\pi }}2^{n}n!}}f_{H}(n)H_{n}(x)}

Some Hermite transform pairs

F ( x ) {\displaystyle F(x)\,} f H ( n ) {\displaystyle f_{H}(n)\,}
x m {\displaystyle x^{m}} { m ! π 2 m n ( m n 2 ) ! , ( m n )  even and 0 0 , otherwise {\displaystyle {\begin{cases}{\frac {m!{\sqrt {\pi }}}{2^{m-n}\left({\frac {m-n}{2}}\right)!}},&(m-n){\text{ even and}}\geq 0\\0,&{\text{otherwise}}\end{cases}}}
e a x {\displaystyle e^{ax}\,} π a n e a 2 / 4 {\displaystyle {\sqrt {\pi }}a^{n}e^{a^{2}/4}\,}
e 2 x t t 2 ,   | t | < 1 2 {\displaystyle e^{2xt-t^{2}},\ |t|<{\frac {1}{2}}\,} π ( 2 t ) n {\displaystyle {\sqrt {\pi }}(2t)^{n}}
H m ( x ) {\displaystyle H_{m}(x)\,} π 2 n n ! δ n m {\displaystyle {\sqrt {\pi }}2^{n}n!\delta _{nm}\,}
x 2 H m ( x ) {\displaystyle x^{2}H_{m}(x)\,} 2 n n ! π { 1 , n = m + 2 ( n + 1 2 ) , n = m ( n + 1 ) ( n + 2 ) , n = m 2 0 , otherwise {\displaystyle 2^{n}n!{\sqrt {\pi }}{\begin{cases}1,&n=m+2\\\left(n+{\frac {1}{2}}\right),&n=m\\(n+1)(n+2),&n=m-2\\0,&{\text{otherwise}}\end{cases}}}
e x 2 H m ( x ) {\displaystyle e^{-x^{2}}H_{m}(x)\,} ( 1 ) p m 2 p 1 / 2 Γ ( p + 1 / 2 ) ,   m + n = 2 p ,   p Z {\displaystyle \left(-1\right)^{p-m}2^{p-1/2}\Gamma (p+1/2),\ m+n=2p,\ p\in \mathbb {Z} }
H m 2 ( x ) {\displaystyle H_{m}^{2}(x)\,} { 2 m + n / 2 π ( m n / 2 ) m ! n ! ( n / 2 ) ! , n  even and 2 m 0 , otherwise {\displaystyle {\begin{cases}2^{m+n/2}{\sqrt {\pi }}{\binom {m}{n/2}}{\frac {m!n!}{(n/2)!}},&n{\text{ even and}}\leq 2m\\0,&{\text{otherwise}}\end{cases}}}
H m ( x ) H p ( x ) {\displaystyle H_{m}(x)H_{p}(x)\,} { 2 k π m ! n ! p ! ( k m ) ! ( k n ) ! ( k p ) ! , n + m + p = 2 k ,   k Z ;   | m p | n m + p 0 , otherwise {\displaystyle {\begin{cases}{\frac {2^{k}{\sqrt {\pi }}m!n!p!}{(k-m)!(k-n)!(k-p)!}},&n+m+p=2k,\ k\in \mathbb {Z} ;\ |m-p|\leq n\leq m+p\\0,&{\text{otherwise}}\end{cases}}\,}
H n + p + q ( x ) H p ( x ) H q ( x ) {\displaystyle H_{n+p+q}(x)H_{p}(x)H_{q}(x)\,} π 2 n + p + q ( n + p + q ) ! {\displaystyle {\sqrt {\pi }}2^{n+p+q}(n+p+q)!\,}
d m d x m F ( x ) {\displaystyle {\frac {d^{m}}{dx^{m}}}F(x)\,} f H ( n + m ) {\displaystyle f_{H}(n+m)\,}
x d m d x m F ( x ) {\displaystyle x{\frac {d^{m}}{dx^{m}}}F(x)\,} n f H ( n + m 1 ) + 1 2 f H ( n + m + 1 ) {\displaystyle nf_{H}(n+m-1)+{\frac {1}{2}}f_{H}(n+m+1)\,}
e x 2 d d x [ e x 2 d d x F ( x ) ] {\displaystyle e^{x^{2}}{\frac {d}{dx}}\left\,} 2 n f H ( n ) {\displaystyle -2nf_{H}(n)\,}
F ( x x 0 ) {\displaystyle F(x-x_{0})} π k = 0 ( x 0 ) k k ! f H ( n + k ) {\displaystyle {\sqrt {\pi }}\sum _{k=0}^{\infty }{\frac {(-x_{0})^{k}}{k!}}f_{H}(n+k)}
F ( x ) G ( x ) {\displaystyle F(x)*G(x)\,} π ( 1 ) n [ 2 2 n + 1 Γ ( n + 3 2 ) ] 1 f H ( n ) g H ( n ) {\displaystyle {\sqrt {\pi }}(-1)^{n}\left^{-1}f_{H}(n)g_{H}(n)\,}
e z 2 sin ( x z ) ,   | z | < 1 2   {\displaystyle e^{z^{2}}\sin(xz),\ |z|<{\frac {1}{2}}\ \,} { π ( 1 ) n 2 ( 2 z ) n , n o d d 0 , n e v e n {\displaystyle {\begin{cases}{\sqrt {\pi }}(-1)^{\lfloor {\frac {n}{2}}\rfloor }(2z)^{n},&n\,\mathrm {odd} \\0,&n\,\mathrm {even} \end{cases}}\,}
( 1 z 2 ) 1 / 2 exp [ 2 x y z ( x 2 + y 2 ) z 2 ( 1 z 2 ) ] {\displaystyle (1-z^{2})^{-1/2}\exp \left\,} π z n H n ( y ) {\displaystyle {\sqrt {\pi }}z^{n}H_{n}(y)}
H m ( y ) H m + 1 ( x ) H m ( x ) H m + 1 ( y ) 2 m + 1 m ! ( x y ) {\displaystyle {\frac {H_{m}(y)H_{m+1}(x)-H_{m}(x)H_{m+1}(y)}{2^{m+1}m!(x-y)}}} { π H n ( y ) n m 0 n > m {\displaystyle {\begin{cases}{\sqrt {\pi }}H_{n}(y)&n\leq m\\0&n>m\end{cases}}}

References

  1. McCully, Joseph Courtney; Churchill, Ruel Vance (1953), Hermite and Laguerre integral transforms : preliminary report
  2. Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite". Journal of the London Mathematical Society (in French). s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22.
  3. Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society. s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281.
  4. Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation" (PDF). Serdica Bulgariacae Mathematicae Publicationes. 9 (2): 223–229.
  5. Erdélyi et al. 1955, p. 194, 10.13 (22).
  6. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" [On the development of a function of arbitrarily many variables according to higher-order Laplace functions], Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj. See p. 174, eq. (18) and p. 173, eq. (13).

Sources

Categories: