Misplaced Pages

Conjugate transpose

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Hermitian transpose) Complex matrix A* obtained from a matrix A by transposing it and conjugating each entry "Adjoint matrix" redirects here. For the transpose of cofactor, see Adjugate matrix.

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m × n {\displaystyle m\times n} complex matrix A {\displaystyle \mathbf {A} } is an n × m {\displaystyle n\times m} matrix obtained by transposing A {\displaystyle \mathbf {A} } and applying complex conjugation to each entry (the complex conjugate of a + i b {\displaystyle a+ib} being a i b {\displaystyle a-ib} , for real numbers a {\displaystyle a} and b {\displaystyle b} ). There are several notations, such as A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} or A {\displaystyle \mathbf {A} ^{*}} , A {\displaystyle \mathbf {A} '} , or (often in physics) A {\displaystyle \mathbf {A} ^{\dagger }} .

For real matrices, the conjugate transpose is just the transpose, A H = A T {\displaystyle \mathbf {A} ^{\mathrm {H} }=\mathbf {A} ^{\operatorname {T} }} .

Definition

The conjugate transpose of an m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } is formally defined by

( A H ) i j = A j i ¯ {\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)_{ij}={\overline {\mathbf {A} _{ji}}}} (Eq.1)

where the subscript i j {\displaystyle ij} denotes the ( i , j ) {\displaystyle (i,j)} -th entry, for 1 i n {\displaystyle 1\leq i\leq n} and 1 j m {\displaystyle 1\leq j\leq m} , and the overbar denotes a scalar complex conjugate.

This definition can also be written as

A H = ( A ¯ ) T = A T ¯ {\displaystyle \mathbf {A} ^{\mathrm {H} }=\left({\overline {\mathbf {A} }}\right)^{\operatorname {T} }={\overline {\mathbf {A} ^{\operatorname {T} }}}}

where A T {\displaystyle \mathbf {A} ^{\operatorname {T} }} denotes the transpose and A ¯ {\displaystyle {\overline {\mathbf {A} }}} denotes the matrix with complex conjugated entries.

Other names for the conjugate transpose of a matrix are Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } can be denoted by any of these symbols:

  • A {\displaystyle \mathbf {A} ^{*}} , commonly used in linear algebra
  • A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} , commonly used in linear algebra
  • A {\displaystyle \mathbf {A} ^{\dagger }} (sometimes pronounced as A dagger), commonly used in quantum mechanics
  • A + {\displaystyle \mathbf {A} ^{+}} , although this symbol is more commonly used for the Moore–Penrose pseudoinverse

In some contexts, A {\displaystyle \mathbf {A} ^{*}} denotes the matrix with only complex conjugated entries and no transposition.

Example

Suppose we want to calculate the conjugate transpose of the following matrix A {\displaystyle \mathbf {A} } .

A = [ 1 2 i 5 1 + i i 4 2 i ] {\displaystyle \mathbf {A} ={\begin{bmatrix}1&-2-i&5\\1+i&i&4-2i\end{bmatrix}}}

We first transpose the matrix:

A T = [ 1 1 + i 2 i i 5 4 2 i ] {\displaystyle \mathbf {A} ^{\operatorname {T} }={\begin{bmatrix}1&1+i\\-2-i&i\\5&4-2i\end{bmatrix}}}

Then we conjugate every entry of the matrix:

A H = [ 1 1 i 2 + i i 5 4 + 2 i ] {\displaystyle \mathbf {A} ^{\mathrm {H} }={\begin{bmatrix}1&1-i\\-2+i&-i\\5&4+2i\end{bmatrix}}}

Basic remarks

A square matrix A {\displaystyle \mathbf {A} } with entries a i j {\displaystyle a_{ij}} is called

  • Hermitian or self-adjoint if A = A H {\displaystyle \mathbf {A} =\mathbf {A} ^{\mathrm {H} }} ; i.e., a i j = a j i ¯ {\displaystyle a_{ij}={\overline {a_{ji}}}} .
  • Skew Hermitian or antihermitian if A = A H {\displaystyle \mathbf {A} =-\mathbf {A} ^{\mathrm {H} }} ; i.e., a i j = a j i ¯ {\displaystyle a_{ij}=-{\overline {a_{ji}}}} .
  • Normal if A H A = A A H {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {H} }} .
  • Unitary if A H = A 1 {\displaystyle \mathbf {A} ^{\mathrm {H} }=\mathbf {A} ^{-1}} , equivalently A A H = I {\displaystyle \mathbf {A} \mathbf {A} ^{\mathrm {H} }={\boldsymbol {I}}} , equivalently A H A = I {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} ={\boldsymbol {I}}} .

Even if A {\displaystyle \mathbf {A} } is not square, the two matrices A H A {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} } and A A H {\displaystyle \mathbf {A} \mathbf {A} ^{\mathrm {H} }} are both Hermitian and in fact positive semi-definite matrices.

The conjugate transpose "adjoint" matrix A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with the adjugate, adj ( A ) {\displaystyle \operatorname {adj} (\mathbf {A} )} , which is also sometimes called adjoint.

The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.

The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication:

a + i b [ a b b a ] . {\displaystyle a+ib\equiv {\begin{bmatrix}a&-b\\b&a\end{bmatrix}}.}

That is, denoting each complex number z {\displaystyle z} by the real 2 × 2 {\displaystyle 2\times 2} matrix of the linear transformation on the Argand diagram (viewed as the real vector space R 2 {\displaystyle \mathbb {R} ^{2}} ), affected by complex z {\displaystyle z} -multiplication on C {\displaystyle \mathbb {C} } .

Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an n × m {\displaystyle n\times m} matrix made up of complex numbers.


For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,

e i θ = ( cos θ sin θ sin θ cos θ ) = cos θ ( 1 0 0 1 ) + sin θ ( 0 1 1 0 ) . {\displaystyle e^{i\theta }={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}=\cos \theta {\begin{pmatrix}1&0\\0&1\end{pmatrix}}+\sin \theta {\begin{pmatrix}0&-1\\1&0\end{pmatrix}}.}

Since e i θ = cos θ + i sin θ {\displaystyle e^{i\theta }=\cos \theta +i\sin \theta } we are led to the matrix representations of the unit numbers as

1 = ( 1 0 0 1 ) , i = ( 0 1 1 0 ) . {\displaystyle 1={\begin{pmatrix}1&0\\0&1\end{pmatrix}},\quad i={\begin{pmatrix}0&-1\\1&0\end{pmatrix}}.} A general complex number z = x + i y {\displaystyle z=x+iy} is then represented as

z = ( x y y x ) . {\displaystyle z={\begin{pmatrix}x&-y\\y&x\end{pmatrix}}.} The complex conjugate operation, where i→−i, is seen to be just the matrix transpose.

Properties

  • ( A + B ) H = A H + B H {\displaystyle (\mathbf {A} +{\boldsymbol {B}})^{\mathrm {H} }=\mathbf {A} ^{\mathrm {H} }+{\boldsymbol {B}}^{\mathrm {H} }} for any two matrices A {\displaystyle \mathbf {A} } and B {\displaystyle {\boldsymbol {B}}} of the same dimensions.
  • ( z A ) H = z ¯ A H {\displaystyle (z\mathbf {A} )^{\mathrm {H} }={\overline {z}}\mathbf {A} ^{\mathrm {H} }} for any complex number z {\displaystyle z} and any m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } .
  • ( A B ) H = B H A H {\displaystyle (\mathbf {A} {\boldsymbol {B}})^{\mathrm {H} }={\boldsymbol {B}}^{\mathrm {H} }\mathbf {A} ^{\mathrm {H} }} for any m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } and any n × p {\displaystyle n\times p} matrix B {\displaystyle {\boldsymbol {B}}} . Note that the order of the factors is reversed.
  • ( A H ) H = A {\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)^{\mathrm {H} }=\mathbf {A} } for any m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } , i.e. Hermitian transposition is an involution.
  • If A {\displaystyle \mathbf {A} } is a square matrix, then det ( A H ) = det ( A ) ¯ {\displaystyle \det \left(\mathbf {A} ^{\mathrm {H} }\right)={\overline {\det \left(\mathbf {A} \right)}}} where det ( A ) {\displaystyle \operatorname {det} (A)} denotes the determinant of A {\displaystyle \mathbf {A} } .
  • If A {\displaystyle \mathbf {A} } is a square matrix, then tr ( A H ) = tr ( A ) ¯ {\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathrm {H} }\right)={\overline {\operatorname {tr} (\mathbf {A} )}}} where tr ( A ) {\displaystyle \operatorname {tr} (A)} denotes the trace of A {\displaystyle \mathbf {A} } .
  • A {\displaystyle \mathbf {A} } is invertible if and only if A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} is invertible, and in that case ( A H ) 1 = ( A 1 ) H {\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\mathrm {H} }} .
  • The eigenvalues of A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} are the complex conjugates of the eigenvalues of A {\displaystyle \mathbf {A} } .
  • A x , y m = x , A H y n {\displaystyle \left\langle \mathbf {A} x,y\right\rangle _{m}=\left\langle x,\mathbf {A} ^{\mathrm {H} }y\right\rangle _{n}} for any m × n {\displaystyle m\times n} matrix A {\displaystyle \mathbf {A} } , any vector in x C n {\displaystyle x\in \mathbb {C} ^{n}} and any vector y C m {\displaystyle y\in \mathbb {C} ^{m}} . Here, , m {\displaystyle \langle \cdot ,\cdot \rangle _{m}} denotes the standard complex inner product on C m {\displaystyle \mathbb {C} ^{m}} , and similarly for , n {\displaystyle \langle \cdot ,\cdot \rangle _{n}} .

Generalizations

The last property given above shows that if one views A {\displaystyle \mathbf {A} } as a linear transformation from Hilbert space C n {\displaystyle \mathbb {C} ^{n}} to C m , {\displaystyle \mathbb {C} ^{m},} then the matrix A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} corresponds to the adjoint operator of A {\displaystyle \mathbf {A} } . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.

Another generalization is available: suppose A {\displaystyle A} is a linear map from a complex vector space V {\displaystyle V} to another, W {\displaystyle W} , then the complex conjugate linear map as well as the transposed linear map are defined, and we may thus take the conjugate transpose of A {\displaystyle A} to be the complex conjugate of the transpose of A {\displaystyle A} . It maps the conjugate dual of W {\displaystyle W} to the conjugate dual of V {\displaystyle V} .

See also

References

  1. ^ Weisstein, Eric W. "Conjugate Transpose". mathworld.wolfram.com. Retrieved 2020-09-08.
  2. H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932.
  3. Chasnov, Jeffrey R. (4 February 2022). "1.6: Matrix Representation of Complex Numbers". Applied Linear Algebra and Differential Equations. LibreTexts.

External links

Categories: