This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (December 2008) (Learn how and when to remove this message) |
Petrology (from Ancient Greek πέτρος (pétros) 'rock' and -λογία (-logía) 'study of') is the branch of geology that studies rocks, their mineralogy, composition, texture, structure and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together because both make heavy use of chemistry, chemical methods, and phase diagrams. Sedimentary petrology is commonly taught together with stratigraphy because it deals with the processes that form sedimentary rock. Modern sedimentary petrology is making increasing use of chemistry.
Background
Lithology was once approximately synonymous with petrography, but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks while petrography is the speciality that deals with microscopic details.
In the petroleum industry, lithology, or more specifically mud logging, is the graphic representation of geological formations being drilled through and drawn on a log called a mud log. As the cuttings are circulated out of the borehole, they are sampled, examined (typically under a 10× microscope) and tested chemically when needed.
Methodology
Petrology utilizes the fields of mineralogy, petrography, optical mineralogy, and chemical analysis to describe the composition and texture of rocks. Petrologists also include the principles of geochemistry and geophysics through the study of geochemical trends and cycles and the use of thermodynamic data and experiments in order to better understand the origins of rocks.
Branches
There are three branches of petrology, corresponding to the three types of rocks: igneous, metamorphic, and sedimentary, and another dealing with experimental techniques:
- Igneous petrology focuses on the composition and texture of igneous rocks (rocks such as granite or basalt which have crystallized from molten rock or magma). Igneous rocks include volcanic and plutonic rocks.
- Sedimentary petrology focuses on the composition and texture of sedimentary rocks (rocks such as sandstone, shale, or limestone which consist of pieces or particles derived from other rocks or biological or chemical deposits, and are usually bound together in a matrix of finer material).
- Metamorphic petrology focuses on the composition and texture of metamorphic rocks (rocks such as slate, marble, gneiss, or schist) which have undergone chemical, mineralogical or textural changes due to the effects of pressure, temperature, or both). The original rock, prior to change (called the protolith), may be of any sort.
- Experimental petrology employs high-pressure, high-temperature apparatus to investigate the geochemistry and phase relations of natural or synthetic materials at elevated pressures and temperatures. Experiments are particularly useful for investigating rocks of the lower crust and upper mantle that rarely survive the journey to the surface in pristine condition. They are also one of the prime sources of information about completely inaccessible rocks, such as those in the Earth's lower mantle and in the mantles of the other terrestrial planets and the Moon. The work of experimental petrologists has laid a foundation on which modern understanding of igneous and metamorphic processes has been built.
See also
References
Citations
- The 22nd edition of the Manual of mineral science. Buch. New York: Wiley. 2002. p. 1. ISBN 978-0-471-25177-4.
- Blatt, Harvey; Tracy, Robert J.; Owens, Brent E. (2006). Petrology: igneous, sedimentary and metamorphic (3rd ed.). New York: Freeman. ISBN 978-0-7167-3743-8.
- Frost, B. R.; Frost, C. D. (2014). Essentials of Igneous and Metamorphic Petrology. Cambridge University Press.
- ^ Winter, John D. (2010). Principles of igneous and metamorphic petrology (2nd ed.). New York: Prentice Hall. pp. 467–468. ISBN 978-0-321-59257-6.
Sources
- Best, Myron G. (2002), Igneous and Metamorphic Petrology (Blackwell Publishing) ISBN 1-4051-0588-7.
- Blatt, Harvey; Tracy, Robert J.; Owens, Brent (2005), Petrology: igneous, sedimentary, and metamorphic (W. H. Freeman) ISBN 978-0-7167-3743-8.
- Boggs, S. Jr. (2009), Petrology of Sedimentary Rocks, Cambridge University Press
- Dietrich, Richard Vincent; Skinner, Brian J. (2009), Gems, Granites, and Gravels: knowing and using rocks and minerals (Cambridge University Press) ISBN 978-0-521-10722-8
- Fei, Yingwei; Bertka, Constance M.; Mysen, Bjorn O. (eds.) (1999), Mantle Petrology: field observations and high-pressure experimentation (Houston TX: Geochemical Society) ISBN 0-941809-05-6.
- Philpotts, Anthony; Ague, Jay (2009), Principles of Igneous and Metamorphic Petrology (Cambridge University Press) ISBN 978-0-521-88006-0
- Robb, L. (2005). Introduction to Ore-Forming Processes (Blackwell Science) ISBN 978-0-632-06378-9
- Tucker, M. E. (2001), Sedimentary Petrology, Blackwell Science
- Yardley, B. W. D.; Warren, Clare (2021). An introduction to metamorphic petrology (2 ed.). Cambridge. ISBN 978-1-108-65955-0. OCLC 1226719524.
{{cite book}}
: CS1 maint: location missing publisher (link)
External links
- Atlas of Igneous and metamorphic rocks, minerals, and textures – Geology Department, University of North Carolina
- Metamorphic Petrology Database (MetPetDB) – Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute
- Petrological Database of the Ocean Floor (PetDB) - Center for International Earth Science Information Network, Columbia University
Geologic principles and processes | ||
---|---|---|
Stratigraphic principles | ||
Petrologic principles | ||
Geomorphologic processes | ||
Sediment transport | ||
Geology portal |
Geology | ||
---|---|---|
Overviews | ||
History of geology | ||
Composition and structure | ||
Historical geology | ||
Dynamic Earth | ||
Water | ||
Geodesy | ||
Geophysics | ||
Applications | ||
Occupations | ||