Misplaced Pages

Hoeffding's lemma

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Inequality in probability theory
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Hoeffding's lemma" – news · newspapers · books · scholar · JSTOR (March 2024)

In probability theory, Hoeffding's lemma is an inequality that bounds the moment-generating function of any bounded random variable, implying that such variables are subgaussian. It is named after the FinnishAmerican mathematical statistician Wassily Hoeffding.

The proof of Hoeffding's lemma uses Taylor's theorem and Jensen's inequality. Hoeffding's lemma is itself used in the proof of Hoeffding's inequality as well as the generalization McDiarmid's inequality.

Statement of the lemma

Let X be any real-valued random variable such that a X b {\displaystyle a\leq X\leq b} almost surely, i.e. with probability one. Then, for all λ R {\displaystyle \lambda \in \mathbb {R} } ,

E [ e λ X ] exp ( λ E [ X ] + λ 2 ( b a ) 2 8 ) , {\displaystyle \mathbb {E} \left\leq \exp {\Big (}\lambda \mathbb {E} +{\frac {\lambda ^{2}(b-a)^{2}}{8}}{\Big )},}

or equivalently,

E [ e λ ( X E [ X ] ) ] exp ( λ 2 ( b a ) 2 8 ) . {\displaystyle \mathbb {E} \left)}\right]\leq \exp {\Big (}{\frac {\lambda ^{2}(b-a)^{2}}{8}}{\Big )}.}

Proof

The following proof is direct but somewhat ad-hoc. Another proof uses exponential tilting; proofs with a slightly worse constant are also available using symmetrization.

Without loss of generality, by replacing X {\displaystyle X} by X E [ X ] {\displaystyle X-\mathbb {E} } , we can assume E [ X ] = 0 {\displaystyle \mathbb {E} =0} , so that a 0 b {\displaystyle a\leq 0\leq b} .

Since e λ x {\displaystyle e^{\lambda x}} is a convex function of x {\displaystyle x} , we have that for all x [ a , b ] {\displaystyle x\in } ,

e λ x b x b a e λ a + x a b a e λ b {\displaystyle e^{\lambda x}\leq {\frac {b-x}{b-a}}e^{\lambda a}+{\frac {x-a}{b-a}}e^{\lambda b}}

So,

E [ e λ X ] b E [ X ] b a e λ a + E [ X ] a b a e λ b = b b a e λ a + a b a e λ b = e L ( λ ( b a ) ) , {\displaystyle {\begin{aligned}\mathbb {E} \left&\leq {\frac {b-\mathbb {E} }{b-a}}e^{\lambda a}+{\frac {\mathbb {E} -a}{b-a}}e^{\lambda b}\\&={\frac {b}{b-a}}e^{\lambda a}+{\frac {-a}{b-a}}e^{\lambda b}\\&=e^{L(\lambda (b-a))},\end{aligned}}}

where L ( h ) = h a b a + ln ( 1 + a e h a b a ) {\displaystyle L(h)={\frac {ha}{b-a}}+\ln(1+{\frac {a-e^{h}a}{b-a}})} . By computing derivatives, we find

L ( 0 ) = L ( 0 ) = 0 {\displaystyle L(0)=L'(0)=0} and L ( h ) = a b e h ( b a e h ) 2 {\displaystyle L''(h)=-{\frac {abe^{h}}{(b-ae^{h})^{2}}}} .

From the AMGM inequality we thus see that L ( h ) 1 4 {\displaystyle L''(h)\leq {\frac {1}{4}}} for all h {\displaystyle h} , and thus, from Taylor's theorem, there is some 0 θ 1 {\displaystyle 0\leq \theta \leq 1} such that

L ( h ) = L ( 0 ) + h L ( 0 ) + 1 2 h 2 L ( h θ ) 1 8 h 2 . {\displaystyle L(h)=L(0)+hL'(0)+{\frac {1}{2}}h^{2}L''(h\theta )\leq {\frac {1}{8}}h^{2}.}

Thus, E [ e λ X ] e 1 8 λ 2 ( b a ) 2 {\displaystyle \mathbb {E} \left\leq e^{{\frac {1}{8}}\lambda ^{2}(b-a)^{2}}} .

See also

Notes

  1. Pascal Massart (26 April 2007). Concentration Inequalities and Model Selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003. Springer. p. 21. ISBN 978-3-540-48503-2.
  2. Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal (2013). Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press.
  3. Romaní, Marc (1 May 2021). "A short proof of Hoeffding's lemma". Retrieved 7 September 2024.


Stub icon

This probability-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: