Infinite-order apeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | ∞ |
Schläfli symbol | {∞,∞} |
Wythoff symbol | ∞ | ∞ 2 ∞ ∞ | ∞ |
Coxeter diagram | |
Symmetry group | , (*∞∞2) , (*∞∞∞) |
Dual | self-dual |
Properties | Vertex-transitive, edge-transitive, face-transitive |
The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
Symmetry
This tiling represents the fundamental domains of *∞ symmetry.
Uniform colorings
This tiling can also be alternately colored in the symmetry from 3 generator positions.
Domains | 0 | 1 | 2 |
---|---|---|---|
symmetry: |
t0{(∞,∞,∞)} |
t1{(∞,∞,∞)} |
t2{(∞,∞,∞)} |
Related polyhedra and tiling
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.
Paracompact uniform tilings in family | ||||||
---|---|---|---|---|---|---|
= = |
= = |
= = |
= = |
= = |
= |
= |
{∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} |
Dual tilings | ||||||
V∞ | V∞.∞.∞ | V(∞.∞) | V∞.∞.∞ | V∞ | V4.∞.4.∞ | V4.4.∞ |
Alternations | ||||||
(*∞∞2) |
(∞*∞) |
(*∞∞∞∞) |
(∞*∞) |
(*∞∞2) |
(2*∞∞) |
(2∞∞) |
h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} |
Alternation duals | ||||||
V(∞.∞) | V(3.∞) | V(∞.4) | V(3.∞) | V∞ | V(4.∞.4) | V3.3.∞.3.∞ |
Paracompact uniform tilings in family | ||||||
---|---|---|---|---|---|---|
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) h2{∞,∞} |
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) h2{∞,∞} |
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) r{∞,∞} |
t(∞,∞,∞) t{∞,∞} |
Dual tilings | ||||||
V∞ | V∞.∞.∞.∞ | V∞ | V∞.∞.∞.∞ | V∞ | V∞.∞.∞.∞ | V∞.∞.∞ |
Alternations | ||||||
(*∞∞∞∞) |
(∞*∞) |
(*∞∞∞∞) |
(∞*∞) |
(*∞∞∞∞) |
(∞*∞) |
(∞∞∞) |
Alternation duals | ||||||
V(∞.∞) | V(∞.4) | V(∞.∞) | V(∞.4) | V(∞.∞) | V(∞.4) | V3.∞.3.∞.3.∞ |
See also
References
- John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery Archived 2013-03-24 at the Wayback Machine
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Tessellation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
| |||||||||||||
| |||||||||||||
|