Misplaced Pages

Infinite-order apeirogonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from I^i symmetry)
Infinite-order apeirogonal tiling
Infinite-order apeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration
Schläfli symbol {∞,∞}
Wythoff symbol ∞ | ∞ 2
∞ ∞ | ∞
Coxeter diagram
Symmetry group , (*∞∞2)
, (*∞∞∞)
Dual self-dual
Properties Vertex-transitive, edge-transitive, face-transitive

The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.

Symmetry

This tiling represents the fundamental domains of *∞ symmetry.

Uniform colorings

This tiling can also be alternately colored in the symmetry from 3 generator positions.

Domains 0 1 2

symmetry:
 

t0{(∞,∞,∞)}

t1{(∞,∞,∞)}

t2{(∞,∞,∞)}

Related polyhedra and tiling

The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.

a{∞,∞} or =
Paracompact uniform tilings in family

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
V∞ V∞.∞.∞ V(∞.∞) V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations

(*∞∞2)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(*∞∞2)

(2*∞∞)

(2∞∞)
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
V(∞.∞) V(3.∞) V(∞.4) V(3.∞) V∞ V(4.∞.4) V3.3.∞.3.∞
Paracompact uniform tilings in family
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
r{∞,∞}
t(∞,∞,∞)
t{∞,∞}
Dual tilings
V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
Alternations

(*∞∞∞∞)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(∞∞∞)
Alternation duals
V(∞.∞) V(∞.4) V(∞.∞) V(∞.4) V(∞.∞) V(∞.4) V3.∞.3.∞.3.∞

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories: