Misplaced Pages

IGSF1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Protein-coding gene in the species Homo sapiens
IGSF1
Identifiers
AliasesIGSF1, CHTE, IGCD1, IGDC1, INHBP, PGSF2, p120, immunoglobulin superfamily member 1
External IDsOMIM: 300137; MGI: 2147913; HomoloGene: 1195; GeneCards: IGSF1; OMA:IGSF1 - orthologs
Gene location (Human)
X chromosome (human)
Chr.X chromosome (human)
X chromosome (human)Genomic location for IGSF1Genomic location for IGSF1
BandXq26.1Start131,273,506 bp
End131,578,899 bp
Gene location (Mouse)
X chromosome (mouse)
Chr.X chromosome (mouse)
X chromosome (mouse)Genomic location for IGSF1Genomic location for IGSF1
BandX|X A5Start48,871,413 bp
End48,886,626 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • Pituitary Gland

  • anterior pituitary

  • right auricle

  • Hypothalamus

  • tibial nerve

  • nucleus accumbens

  • apex of heart

  • left testis

  • right testis

  • substantia nigra
Top expressed in
  • arcuate nucleus

  • median eminence

  • dorsomedial hypothalamic nucleus

  • ventromedial nucleus

  • suprachiasmatic nucleus

  • dorsal tegmental nucleus

  • mammillary body

  • lateral hypothalamus

  • lumbar subsegment of spinal cord

  • ventral tegmental area
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3547

209268

Ensembl

ENSG00000147255

ENSMUSG00000031111

UniProt

Q8N6C5

Q7TQA1

RefSeq (mRNA)

NM_001170961
NM_001170962
NM_001170963
NM_001555
NM_205833

NM_177591
NM_177915
NM_183335
NM_183336

RefSeq (protein)

NP_001164432
NP_001164433
NP_001164434
NP_001546
NP_991402

NP_808259
NP_808583
NP_899178
NP_899179

Location (UCSC)Chr X: 131.27 – 131.58 MbChr X: 48.87 – 48.89 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Immunoglobulin superfamily, member 1 is a plasma membrane glycoprotein encoded by the IGSF1 gene, which maps to the X chromosome in humans and other mammalian species.

Function

IGSF1's function in normal cells is unresolved. The protein is a member of the immunoglobulin (Ig) superfamily. It was predicted to contain 12 Ig loops, a transmembrane domain, and a short cytoplasmic tail. However, during translation of the protein, it is cleaved into amino- and carboxy-terminal domains (NTD and CTD, respectively). Only the CTD is trafficked to the plasma membrane. The NTD is trapped within the endoplasmic reticulum (ER). Pathogenic mutations in the IGSF1 gene block the transport of the CTD to the plasma membrane.

Clinical relevance

Mutations in IGSF1 cause a condition called IGSF1 deficiency syndrome or central hypothyroidism/testicular enlargement (CHTE). The condition, which affects an estimated 1:100,000 people, is more common in males than females. Most affected males are discovered through neonatal screening for hypothyroidism. The extent of hypothyroidism is variable, but most male cases require treatment with thyroid hormone replacement. Males with IGSF1 deficiency exhibit enlarged testicles (also known as macroorchidism) and a delay in the development of secondary sexual characteristics. Post-pubertally, there is no evidence of impaired fertility in these men.

The IGSF1 gene is also active in the brain and in the developing liver. It can also become reactivated in liver cancer (hepatocellular carcinoma).

Animal model

Mice lacking a functional Igsf1 gene similarly exhibit hypothyroidism of central origin. The IGSF1 gene is particularly active in the pituitary gland. The pituitary synthesizes and secretes thyroid-stimulating hormone (TSH). TSH, in turn, stimulates production of the thyroid hormones, thyroxine and triiodothyronine, by the thyroid gland. TSH secretion is controlled by thyrotropin-releasing hormone (TRH), which is released by neurons in the hypothalamus of the brain. In Igsf1 deficient mice, the receptor for TRH is downregulated in the pituitary. This decrease could explain, at least in part, the central hypothyroidism observed in both humans and mice with IGSF1 deficiency. How the loss of IGSF1 causes a decrease in TRH receptors is presently unknown.

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000147255Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000031111Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entry 300137: Immunoglobulin superfamily, member 1; IGSF1".
  6. Mazzarella R, Pengue G, Jones J, Jones C, Schlessinger D (Mar 1998). "Cloning and expression of an immunoglobulin superfamily gene (IGSF1) in Xq25". Genomics. 48 (2): 157–62. doi:10.1006/geno.1997.5156. PMID 9521868.
  7. Frattini A, Faranda S, Redolfi E, Allavena P, Vezzoni P (Jul 1998). "Identification and genomic organization of a gene coding for a new member of the cell adhesion molecule family mapping to Xq25". Gene. 214 (1–2): 1–6. doi:10.1016/S0378-1119(98)00253-4. PMID 9729118.
  8. "Entrez Gene: IGSF1 immunoglobulin superfamily, member 1".
  9. Robakis T, Bak B, Lin SH, Bernard DJ, Scheiffele P (Dec 2008). "An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin domain protein". The Journal of Biological Chemistry. 283 (52): 36369–76. doi:10.1074/jbc.M807527200. PMC 2662301. PMID 18981173.
  10. ^ Sun Y, Bak B, Schoenmakers N, van Trotsenburg AS, Oostdijk W, Voshol P, Cambridge E, White JK, le Tissier P, Gharavy SN, Martinez-Barbera JP, Stokvis-Brantsma WH, Vulsma T, Kempers MJ, Persani L, Campi I, Bonomi M, Beck-Peccoz P, Zhu H, Davis TM, Hokken-Koelega AC, Del Blanco DG, Rangasami JJ, Ruivenkamp CA, Laros JF, Kriek M, Kant SG, Bosch CA, Biermasz NR, Appelman-Dijkstra NM, Corssmit EP, Hovens GC, Pereira AM, den Dunnen JT, Wade MG, Breuning MH, Hennekam RC, Chatterjee K, Dattani MT, Wit JM, Bernard DJ (Dec 2012). "Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement". Nature Genetics. 44 (12): 1375–81. doi:10.1038/ng.2453. PMC 3511587. PMID 23143598.
  11. "Entry 300888: Hypothyroidism, central, and testicular enlargement; CHTE".
  12. Joustra SD, van Trotsenburg AS, Sun Y, Losekoot M, Bernard DJ, Biermasz NR, Oostdijk W, Wit JM (May 2013). "IGSF1 deficiency syndrome: A newly uncovered endocrinopathy". Rare Diseases. 1 (1): e24883. doi:10.4161/rdis.24883. PMC 3915563. PMID 25002994.
  13. Patil MA, Chua MS, Pan KH, Lin R, Lih CJ, Cheung ST, Ho C, Li R, Fan ST, Cohen SN, Chen X, So S (May 2005). "An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma". Oncogene. 24 (23): 3737–47. doi:10.1038/sj.onc.1208479. PMID 15735714. S2CID 23148568.

Further reading


Stub icon

This article on a gene on the human X chromosome and/or its associated protein is a stub. You can help Misplaced Pages by expanding it.

Categories: