This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Immunodeficiency" – news · newspapers · books · scholar · JSTOR (November 2007) (Learn how and when to remove this message) |
Immunodeficiency | |
---|---|
Other names | Immunocompromisation, immune deficiency |
Specialty | Immunology |
Medication | Imuran |
Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include HIV infection and environmental factors, such as nutrition. Immunocompromisation may also be due to genetic diseases/flaws such as SCID.
In clinical settings, immunosuppression by some drugs, such as steroids, can either be an adverse effect or the intended purpose of the treatment. Examples of such use is in organ transplant surgery as an anti-rejection measure and in patients with an overactive immune system, as in autoimmune diseases. Some people are born with intrinsic defects in their immune system, or primary immunodeficiency.
A person who has an immunodeficiency of any kind is said to be immunocompromised. An immunocompromised individual may particularly be vulnerable to opportunistic infections, in addition to normal infections that could affect anyone. It also decreases cancer immunosurveillance, in which the immune system scans the body's cells and kills neoplastic ones. They are also more susceptible to infectious diseases owing to the reduced protection afforded by vaccines.
Types
By affected component
- Humoral immune deficiency (including B cell deficiency or dysfunction), with signs or symptoms depending on the cause, but generally include signs of hypogammaglobulinemia (decrease of one or more types of antibodies) with presentations including repeated mild respiratory infections, and/or agammaglobulinemia (lack of all or most antibody production) which results in frequent severe infections and is often fatal.
- T cell deficiency, often causes secondary disorders such as acquired immune deficiency syndrome (AIDS).
- Granulocyte deficiency, including decreased numbers of granulocytes (called as granulocytopenia or, if absent, agranulocytosis) such as of neutrophil granulocytes (termed neutropenia). Granulocyte deficiencies also include decreased function of individual granulocytes, such as in chronic granulomatous disease.
- Asplenia, where there is no function of the spleen
- Complement deficiency is where the function of the complement system is deficient
In reality, immunodeficiency often affects multiple components, with notable examples including severe combined immunodeficiency (which is primary) and acquired immune deficiency syndrome (which is secondary).
Affected components | Main causes | Main pathogens of resultant infections | |
---|---|---|---|
Humoral immune deficiency | B cells, plasma cells or antibodies | ||
T cell deficiency | T cells |
|
Intracellular pathogens, including Herpes simplex virus, Mycobacterium, Listeria, and intracellular fungal infections. |
Neutropenia | Neutrophil granulocytes |
|
|
Asplenia | Spleen |
| |
Complement deficiency | Complement system |
|
|
Primary or secondary
The distinction between primary versus secondary immunodeficiencies is based on, respectively, whether the cause originates in the immune system itself or is, in turn, due to insufficiency of a supporting component of it or an external decreasing factor of it.
Primary immunodeficiency
Main article: Primary immunodeficiencyA number of rare diseases feature a heightened susceptibility to infections from childhood onward. Primary Immunodeficiency is also known as congenital immunodeficiencies. Many of these disorders are hereditary and are autosomal recessive or X-linked. There are over 95 recognised primary immunodeficiency syndromes; they are generally grouped by the part of the immune system that is malfunctioning, such as lymphocytes or granulocytes.
The treatment of primary immunodeficiencies depends on the nature of the defect, and may involve antibody infusions, long-term antibiotics and (in some cases) stem cell transplantation. The characteristics of lacking and/or impaired antibody functions can be related to illnesses such as X-Linked Agammaglobulinemia and Common Variable Immune Deficiency
Secondary immunodeficiencies
Further information: ImmunosuppressionSecondary immunodeficiencies, also known as acquired immunodeficiencies, can result from various immunosuppressive agents, for example, malnutrition, aging, particular medications (e.g., chemotherapy, disease-modifying antirheumatic drugs, immunosuppressive drugs after organ transplants, glucocorticoids) and environmental toxins like mercury and other heavy metals, pesticides and petrochemicals like styrene, dichlorobenzene, xylene, and ethylphenol. For medications, the term immunosuppression generally refers to both beneficial and potential adverse effects of decreasing the function of the immune system, while the term immunodeficiency generally refers solely to the adverse effect of increased risk for infection.
Many specific diseases directly or indirectly cause immunosuppression. This includes many types of cancer, particularly those of the bone marrow and blood cells (leukemia, lymphoma, multiple myeloma), and certain chronic infections. Immunodeficiency is also the hallmark of acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV). HIV directly infects a small number of T helper cells, and also impairs other immune system responses indirectly.
Various hormonal and metabolic disorders can also result in immune deficiency including anemia, hypothyroidism and hyperglycemia.
Smoking, alcoholism and drug abuse also depress immune response.
Heavy schedules of training and competition in athletes increases their risk of immune deficiencies.
Causes
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known.
Immunodeficiency and autoimmunity
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (November 2016) (Learn how and when to remove this message) |
There are a large number of immunodeficiency syndromes that present clinical and laboratory characteristics of autoimmunity. The decreased ability of the immune system to clear infections in these patients may be responsible for causing autoimmunity through perpetual immune system activation. One example is common variable immunodeficiency (CVID) where multiple autoimmune diseases are seen, e.g., inflammatory bowel disease, autoimmune thrombocytopenia, and autoimmune thyroid disease. Familial hemophagocytic lymphohistiocytosis, an autosomal recessive primary immunodeficiency, is another example. Low blood levels of red blood cells, white blood cells, and platelets, rashes, lymph node enlargement, and enlargement of the liver and spleen are commonly seen in these patients. Presence of multiple uncleared viral infections due to lack of perforin are thought to be responsible. In addition to chronic and/or recurrent infections many autoimmune diseases including arthritis, autoimmune hemolytic anemia, scleroderma and type 1 diabetes are also seen in X-linked agammaglobulinemia (XLA). Recurrent bacterial and fungal infections and chronic inflammation of the gut and lungs are seen in chronic granulomatous disease (CGD) as well. CGD is caused by a decreased production of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by neutrophils. Hypomorphic RAG mutations are seen in patients with midline granulomatous disease; an autoimmune disorder that is commonly seen in patients with granulomatosis with polyangiitis and NK/T cell lymphomas. Wiskott–Aldrich syndrome (WAS) patients also present with eczema, autoimmune manifestations, recurrent bacterial infections and lymphoma. In autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) also autoimmunity and infections coexist: organ-specific autoimmune manifestations (e.g., hypoparathyroidism and adrenocortical failure) and chronic mucocutaneous candidiasis. Finally, IgA deficiency is also sometimes associated with the development of autoimmune and atopic phenomena.
Diagnosis
Medical History and Physical Examination: A physician will inquire about past illnesses and family history of immune disorders to identify inherited conditions. A detailed physical examination helps recognize symptoms indicative of an immune disorder. Blood Tests: these tests are instrumental in diagnosing immunodeficiency as they measure: Infection-fighting proteins (immunoglobulins): Essential for robust immune defense, these protein levels are measured to evaluate immune function. Blood cell counts: Deviations in specific blood cells can point to an immune system anomaly. Immune system cells: These assessments are used to measure the levels of various immune cells. Genetic testing involves collecting samples from patients for molecular analysis when there is a suspicion of inborn errors in immunity. Most Primary Immunodeficiency Disorders (PIDs) are inherited as single-gene defects. The key genes associated with immunodeficiency diseases include CD40L, CD40, RAG1, RAG2, IL2RG, and ADA. Here is a summary of some methods utilized to identify genetic anomalies: Sanger Sequencing of Single Genes: Sanger sequencing is widely recognized as the benchmark method for accurately identifying individual nucleotide changes, as well as small-scale insertions or deletions in DNA. It is particularly valuable for confirming known familial genetic variations, for validating findings from next-generation sequencing technologies, and in specific scenarios that require sequencing of single genes. An example is its use to confirm mutations in the Bruton tyrosine kinase (BTK) gene, which are linked to X-linked agammaglobulinemia (XLA) • Targeted Gene Sequencing Panels (tNGS): This technology is ideal for examining genes in specific pathways or for follow-up experiments (targeted resequencing) from whole genome sequencing (WGS). It is rapid and more cost-effective than WGS, and because it allows for deeper sequencing. • Whole Exome Sequencing (WES): is a commonly used method which captures the majority of coding regions of the genome for sequencing, as these regions contain the majority of disease-causing mutations Useful for identifying mutations in specific genes • Trio or Whole-Family Analyses: In some cases, analyzing the DNA of the patient, parents, and siblings (trio analysis) or the entire family (whole-family analysis) can reveal inheritance patterns and identify causative mutations
Treatment
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administered, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Prognosis
Prognosis depends greatly on the nature and severity of the condition. Some deficiencies cause early mortality (before age one), others with or even without treatment are lifelong conditions that cause little mortality or morbidity. Newer stem cell transplant technologies may lead to gene based treatments of debilitating and fatal genetic immune deficiencies. Prognosis of acquired immune deficiencies depends on avoiding or treating the causative agent or condition (like AIDS).
See also
- Acquired immune deficiency syndrome (AIDS)
- Immune disorder
- Autoimmune disease, immune response to self-proteins
- Allergy, immune response to harmless non-self proteins
- Immunosenescence, age-associated immune deficiency
- Steroids, commonly administered drugs like prednisone that suppress the immune system
- Human genetic enhancement
- Immune system
- Immunology
References
- Chinen J, Shearer WT (February 2010). "Secondary immunodeficiencies, including HIV infection". The Journal of Allergy and Clinical Immunology. 125 (2 Suppl 2): S195–203. doi:10.1016/j.jaci.2009.08.040. PMC 6151868. PMID 20042227.
- "Primary immunodeficiency". Mayo Clinic. 30 January 2020. Retrieved 13 May 2020.
- Meidani, Mohsen; Naeini, Alireza Emami; Rostami, Mojtaba; Sherkat, Roya; Tayeri, Katayoun (March 2014). "Immunocompromised patients: Review of the most common infections happened in 446 hospitalized patients". Journal of Research in Medical Sciences. 19 (Suppl 1): S71–S73pmc=4078380. PMC 4078380. PMID 25002900.
- Lee, Ainsley Ryan Yan Bin; Wong, Shi Yin; Chai, Louis Yi Ann; Lee, Soo Chin; Lee, Matilda Xinwei; Muthiah, Mark Dhinesh; Tay, Sen Hee; Teo, Chong Boon; Tan, Benjamin Kye Jyn; Chan, Yiong Huak; Sundar, Raghav; Soon, Yu Yang (2 March 2022). "Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis". BMJ. 376: e068632. doi:10.1136/bmj-2021-068632. PMC 8889026. PMID 35236664.
- Zbinden, Delphine; Manuel, Oriol (February 2014). "Influenza vaccination in immunocompromised patients: efficacy and safety". Immunotherapy. 6 (2): 131–139. doi:10.2217/imt.13.171. PMID 24491087.
- Greenberg S. "Immunodeficiency". University of Toronto. Archived from the original on 10 July 2013.
- Schwartz RA (2019-10-22). Jyonouchi H (ed.). "T-cell Disorders". Medscape.
- ^ If not otherwise specified in boxes, then reference for entries is: Page 432, Chapter 22, Table 22.1 in: Jones J, Bannister BA, Gillespie SH (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 978-1-4051-2665-6.
- Page 435 in: Jones J, Bannister BA, Gillespie SH (2006). Infection: Microbiology and Management. Wiley-Blackwell. ISBN 978-1-4051-2665-6.
- ^ Brigden ML (February 2001). "Detection, education and management of the asplenic or hyposplenic patient". American Family Physician. 63 (3): 499–506, 508. PMID 11272299.
- ^ Basic Immunology: Functions and Disorders of the Immune System, 3rd Ed. 2011.
- Rosen FS, Cooper MD, Wedgwood RJ (August 1995). "The primary immunodeficiencies". The New England Journal of Medicine. 333 (7): 431–40. doi:10.1056/NEJM199508173330707. PMID 7616993. S2CID 39699189.
- ^ "Immune Deficiency Foundation". primaryimmune.org. Retrieved 2017-04-17.
- Gleeson, Michael; Nieman, David C; Pedersen, Bente K (January 2004). "Exercise, nutrition and immune function". Journal of Sports Sciences. 22 (1): 115–125. doi:10.1080/0264041031000140590. PMID 14971437. S2CID 84378380.
- "Nutrition and Immunity". The Nutrition Source. Harvard T.H. Chan School of Public Health. May 2020. Retrieved 8 November 2020.
- Bourke CD, Berkley JA, Prendergast AJ (2016). "Immune Dysfunction as a Cause and Consequence of Malnutrition". Trends in Immunology. 37 (6): 386–398. doi:10.1016/j.it.2016.04.003. PMC 4889773. PMID 27237815.
- Charles A Janeway, Jr; Travers, Paul; Walport, Mark; Shlomchik, Mark J. (2001). "Inherited immunodeficiency diseases". Immunobiology. Garland Science.
- Grammatikos AP, Tsokos GC (February 2012). "Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus". Trends in Molecular Medicine. 18 (2): 101–8. doi:10.1016/j.molmed.2011.10.005. PMC 3278563. PMID 22177735.
- "Primary immunodeficiency - Diagnosis and treatment". Mayo Clinic.
- "Laboratory tests". Immune Deficiency Foundation.
- FERNANDEZ, JAMES. "Overview of Immunodeficiency Disorders. Merck Manuals Consumer Version".
- von Hardenberg, Sandra; Klefenz; Steinemann (2024). "Current genetic diagnostics in inborn errors of immunity". Frontiers in Pediatrics. 12. doi:10.3389/fped.2024.1279112. PMC 11039790. PMID 38659694.
- von Hardenberg, Sandra (2024). "Pediatric Immunology Volume 12". Frontiers in Pediatrics. 12. doi:10.3389/fped.2024.1279112. PMC 11039790. PMID 38659694.
- "Solo VS extended family analysis in consanguineous populations" (Document). BMC Medical Genomics. doi:10.1186/s12920-020-00743-8.
- Stern A, Green H, Paul M, Vidal L, Leibovici L (October 2014). "Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients". The Cochrane Database of Systematic Reviews. 10 (10): CD005590. doi:10.1002/14651858.CD005590.pub3. PMC 6457644. PMID 25269391.
External links
Classification | D |
---|---|
External resources |
Lymphocytic adaptive immune system and complement | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lymphoid |
| ||||||||
Lymphocytes | |||||||||
Substances |
Lymphoid and complement disorders causing immunodeficiency | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Primary |
| ||||||||||||
Acquired | |||||||||||||
Leukopenia: Lymphocytopenia | |||||||||||||
Complement deficiency |
Diseases of monocytes and granulocytes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Monocytes and macrophages |
| ||||||||
Granulocytes |
| ||||||||
Disorder of phagocytosis |
|