Misplaced Pages

Incomplete Bessel functions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Incomplete Bessel functions" – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Incomplete Bessel functions" – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.

Definition

The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:

J v 1 ( z , w ) J v + 1 ( z , w ) = 2 z J v ( z , w ) {\displaystyle J_{v-1}(z,w)-J_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}J_{v}(z,w)}
Y v 1 ( z , w ) Y v + 1 ( z , w ) = 2 z Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)-Y_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}Y_{v}(z,w)}
I v 1 ( z , w ) + I v + 1 ( z , w ) = 2 z I v ( z , w ) {\displaystyle I_{v-1}(z,w)+I_{v+1}(z,w)=2{\dfrac {\partial }{\partial z}}I_{v}(z,w)}
K v 1 ( z , w ) + K v + 1 ( z , w ) = 2 z K v ( z , w ) {\displaystyle K_{v-1}(z,w)+K_{v+1}(z,w)=-2{\dfrac {\partial }{\partial z}}K_{v}(z,w)}
H v 1 ( 1 ) ( z , w ) H v + 1 ( 1 ) ( z , w ) = 2 z H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)}(z,w)-H_{v+1}^{(1)}(z,w)=2{\dfrac {\partial }{\partial z}}H_{v}^{(1)}(z,w)}
H v 1 ( 2 ) ( z , w ) H v + 1 ( 2 ) ( z , w ) = 2 z H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)-H_{v+1}^{(2)}(z,w)=2{\dfrac {\partial }{\partial z}}H_{v}^{(2)}(z,w)}

And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:

J v 1 ( z , w ) + J v + 1 ( z , w ) = 2 v z J v ( z , w ) 2 tanh v w z w J v ( z , w ) {\displaystyle J_{v-1}(z,w)+J_{v+1}(z,w)={\dfrac {2v}{z}}J_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}J_{v}(z,w)}
Y v 1 ( z , w ) + Y v + 1 ( z , w ) = 2 v z Y v ( z , w ) 2 tanh v w z w Y v ( z , w ) {\displaystyle Y_{v-1}(z,w)+Y_{v+1}(z,w)={\dfrac {2v}{z}}Y_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}Y_{v}(z,w)}
I v 1 ( z , w ) I v + 1 ( z , w ) = 2 v z I v ( z , w ) 2 tanh v w z w I v ( z , w ) {\displaystyle I_{v-1}(z,w)-I_{v+1}(z,w)={\dfrac {2v}{z}}I_{v}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}I_{v}(z,w)}
K v 1 ( z , w ) K v + 1 ( z , w ) = 2 v z K v ( z , w ) + 2 tanh v w z w K v ( z , w ) {\displaystyle K_{v-1}(z,w)-K_{v+1}(z,w)=-{\dfrac {2v}{z}}K_{v}(z,w)+{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}K_{v}(z,w)}
H v 1 ( 1 ) ( z , w ) + H v + 1 ( 1 ) ( z , w ) = 2 v z H v ( 1 ) ( z , w ) 2 tanh v w z w H v ( 1 ) ( z , w ) {\displaystyle H_{v-1}^{(1)}(z,w)+H_{v+1}^{(1)}(z,w)={\dfrac {2v}{z}}H_{v}^{(1)}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}H_{v}^{(1)}(z,w)}
H v 1 ( 2 ) ( z , w ) + H v + 1 ( 2 ) ( z , w ) = 2 v z H v ( 2 ) ( z , w ) 2 tanh v w z w H v ( 2 ) ( z , w ) {\displaystyle H_{v-1}^{(2)}(z,w)+H_{v+1}^{(2)}(z,w)={\dfrac {2v}{z}}H_{v}^{(2)}(z,w)-{\dfrac {2\tanh vw}{z}}{\dfrac {\partial }{\partial w}}H_{v}^{(2)}(z,w)}

Where the new parameter w {\displaystyle w} defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:

K v ( z , w ) = w e z cosh t cosh v t   d t {\displaystyle K_{v}(z,w)=\int _{w}^{\infty }e^{-z\cosh t}\cosh vt~dt}
J v ( z , w ) = 0 w e z cosh t cosh v t   d t {\displaystyle J_{v}(z,w)=\int _{0}^{w}e^{-z\cosh t}\cosh vt~dt}

Properties

J v ( z , w ) = J v ( z ) + e v π i 2 J ( i z , v , w ) e v π i 2 J ( i z , v , w ) i π {\displaystyle J_{v}(z,w)=J_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)-e^{-{\frac {v\pi i}{2}}}J(-iz,v,w)}{i\pi }}}
Y v ( z , w ) = Y v ( z ) + e v π i 2 J ( i z , v , w ) + e v π i 2 J ( i z , v , w ) π {\displaystyle Y_{v}(z,w)=Y_{v}(z)+{\dfrac {e^{\frac {v\pi i}{2}}J(iz,v,w)+e^{-{\frac {v\pi i}{2}}}J(-iz,v,w)}{\pi }}}
I v ( z , w ) = I v ( z , w ) {\displaystyle I_{-v}(z,w)=I_{v}(z,w)} for integer v {\displaystyle v}
I v ( z , w ) I v ( z , w ) = I v ( z ) I v ( z ) 2 sin v π π J ( z , v , w ) {\displaystyle I_{-v}(z,w)-I_{v}(z,w)=I_{-v}(z)-I_{v}(z)-{\dfrac {2\sin v\pi }{\pi }}J(z,v,w)}
I v ( z , w ) = I v ( z ) + J ( z , v , w ) e v π i J ( z , v , w ) i π {\displaystyle I_{v}(z,w)=I_{v}(z)+{\dfrac {J(-z,v,w)-e^{-v\pi i}J(z,v,w)}{i\pi }}}
I v ( z , w ) = e v π i 2 J v ( i z , w ) {\displaystyle I_{v}(z,w)=e^{-{\frac {v\pi i}{2}}}J_{v}(iz,w)}
K v ( z , w ) = K v ( z , w ) {\displaystyle K_{-v}(z,w)=K_{v}(z,w)}
K v ( z , w ) = π 2 I v ( z , w ) I v ( z , w ) sin v π {\displaystyle K_{v}(z,w)={\dfrac {\pi }{2}}{\dfrac {I_{-v}(z,w)-I_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v}
H v ( 1 ) ( z , w ) = J v ( z , w ) + i Y v ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)=J_{v}(z,w)+iY_{v}(z,w)}
H v ( 2 ) ( z , w ) = J v ( z , w ) i Y v ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)=J_{v}(z,w)-iY_{v}(z,w)}
H v ( 1 ) ( z , w ) = e v π i H v ( 1 ) ( z , w ) {\displaystyle H_{-v}^{(1)}(z,w)=e^{v\pi i}H_{v}^{(1)}(z,w)}
H v ( 2 ) ( z , w ) = e v π i H v ( 2 ) ( z , w ) {\displaystyle H_{-v}^{(2)}(z,w)=e^{-v\pi i}H_{v}^{(2)}(z,w)}
H v ( 1 ) ( z , w ) = J v ( z , w ) e v π i J v ( z , w ) i sin v π = Y v ( z , w ) e v π i Y v ( z , w ) sin v π {\displaystyle H_{v}^{(1)}(z,w)={\dfrac {J_{-v}(z,w)-e^{-v\pi i}J_{v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{-v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v}
H v ( 2 ) ( z , w ) = e v π i J v ( z , w ) J v ( z , w ) i sin v π = Y v ( z , w ) e v π i Y v ( z , w ) sin v π {\displaystyle H_{v}^{(2)}(z,w)={\dfrac {e^{v\pi i}J_{v}(z,w)-J_{-v}(z,w)}{i\sin v\pi }}={\dfrac {Y_{-v}(z,w)-e^{v\pi i}Y_{v}(z,w)}{\sin v\pi }}} for non-integer v {\displaystyle v}

Differential equations

K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfies the inhomogeneous Bessel's differential equation

z 2 d 2 y d z 2 + z d y d z ( x 2 + v 2 ) y = ( v sinh v w + z cosh v w sinh w ) e z cosh w {\displaystyle z^{2}{\dfrac {d^{2}y}{dz^{2}}}+z{\dfrac {dy}{dz}}-(x^{2}+v^{2})y=(v\sinh vw+z\cosh vw\sinh w)e^{-z\cosh w}}

Both J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} , H v ( 1 ) ( z , w ) {\displaystyle H_{v}^{(1)}(z,w)} and H v ( 2 ) ( z , w ) {\displaystyle H_{v}^{(2)}(z,w)} satisfy the partial differential equation

z 2 2 y z 2 + z y z + ( z 2 v 2 ) y 2 y w 2 + 2 v tanh v w y w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}+(z^{2}-v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0}

Both I v ( z , w ) {\displaystyle I_{v}(z,w)} and K v ( z , w ) {\displaystyle K_{v}(z,w)} satisfy the partial differential equation

z 2 2 y z 2 + z y z ( z 2 + v 2 ) y 2 y w 2 + 2 v tanh v w y w = 0 {\displaystyle z^{2}{\dfrac {\partial ^{2}y}{\partial z^{2}}}+z{\dfrac {\partial y}{\partial z}}-(z^{2}+v^{2})y-{\dfrac {\partial ^{2}y}{\partial w^{2}}}+2v\tanh vw{\dfrac {\partial y}{\partial w}}=0}

Integral representations

Base on the preliminary definitions above, one would derive directly the following integral forms of J v ( z , w ) {\displaystyle J_{v}(z,w)} , Y v ( z , w ) {\displaystyle Y_{v}(z,w)} :

J v ( z , w ) = J v ( z ) + 1 π i ( 0 w e v π i 2 i z cosh t cosh v t   d t 0 w e i z cosh t v π i 2 cosh v t   d t ) = J v ( z ) + 1 π i ( 0 w cos ( z cosh t v π 2 ) cosh v t   d t i 0 w sin ( z cosh t v π 2 ) cosh v t   d t 0 w cos ( z cosh t v π 2 ) cosh v t   d t i 0 w sin ( z cosh t v π 2 ) cosh v t   d t ) = J v ( z ) + 1 π i ( 2 i 0 w sin ( z cosh t v π 2 ) cosh v t   d t ) = J v ( z ) 2 π 0 w sin ( z cosh t v π 2 ) cosh v t   d t {\displaystyle {\begin{aligned}J_{v}(z,w)&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(\int _{0}^{w}e^{{\frac {v\pi i}{2}}-iz\cosh t}\cosh vt~dt-\int _{0}^{w}e^{iz\cosh t-{\frac {v\pi i}{2}}}\cosh vt~dt\right)\\&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right.\\&\quad \quad \quad \quad \quad \quad \left.-\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=J_{v}(z)+{\dfrac {1}{\pi i}}\left(-2i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=J_{v}(z)-{\dfrac {2}{\pi }}\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\end{aligned}}}
Y v ( z , w ) = Y v ( z ) + 1 π ( 0 w e v π i 2 i z cosh t cosh v t   d t + 0 w e i z cosh t v π i 2 cosh v t   d t ) = Y v ( z ) + 1 π ( 0 w cos ( z cosh t v π 2 ) cosh v t   d t i 0 w sin ( z cosh t v π 2 ) cosh v t   d t + 0 w cos ( z cosh t v π 2 ) cosh v t   d t + i 0 w sin ( z cosh t v π 2 ) cosh v t   d t ) = Y v ( z ) + 2 π 0 w cos ( z cosh t v π 2 ) cosh v t   d t {\displaystyle {\begin{aligned}Y_{v}(z,w)&=Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}e^{{\frac {v\pi i}{2}}-iz\cosh t}\cosh vt~dt+\int _{0}^{w}e^{iz\cosh t-{\frac {v\pi i}{2}}}\cosh vt~dt\right)\\&=Y_{v}(z)+{\dfrac {1}{\pi }}\left(\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt-i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right.\\&\quad \quad \quad \quad \quad \quad \left.+\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt+i\int _{0}^{w}\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\right)\\&=Y_{v}(z)+{\dfrac {2}{\pi }}\int _{0}^{w}\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt\end{aligned}}}

With the Mehler–Sonine integral expressions of J v ( z ) = 2 π 0 sin ( z cosh t v π 2 ) cosh v t   d t {\displaystyle J_{v}(z)={\dfrac {2}{\pi }}\int _{0}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z ) = 2 π 0 cos ( z cosh t v π 2 ) cosh v t   d t {\displaystyle Y_{v}(z)=-{\dfrac {2}{\pi }}\int _{0}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} mentioned in Digital Library of Mathematical Functions,

we can further simplify to J v ( z , w ) = 2 π w sin ( z cosh t v π 2 ) cosh v t   d t {\displaystyle J_{v}(z,w)={\dfrac {2}{\pi }}\int _{w}^{\infty }\sin \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} and Y v ( z , w ) = 2 π w cos ( z cosh t v π 2 ) cosh v t   d t {\displaystyle Y_{v}(z,w)=-{\dfrac {2}{\pi }}\int _{w}^{\infty }\cos \left(z\cosh t-{\dfrac {v\pi }{2}}\right)\cosh vt~dt} , but the issue is not quite good since the convergence range will reduce greatly to | v | < 1 {\displaystyle |v|<1} .

References

  1. Jones, D. S. (February 2007). "Incomplete Bessel functions. I". Proceedings of the Edinburgh Mathematical Society. 50 (1): 173–183. doi:10.1017/S0013091505000490.
  2. Paris, R. B. (2010), "Bessel Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

External links

Category: