Classes of partial recursive functions
In computability theory , index sets describe classes of computable functions ; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.
Definition
Let
φ
e
{\displaystyle \varphi _{e}}
be a computable enumeration of all partial computable functions, and
W
e
{\displaystyle W_{e}}
be a computable enumeration of all c.e. sets .
Let
A
{\displaystyle {\mathcal {A}}}
be a class of partial computable functions. If
A
=
{
x
:
φ
x
∈
A
}
{\displaystyle A=\{x\,:\,\varphi _{x}\in {\mathcal {A}}\}}
then
A
{\displaystyle A}
is the index set of
A
{\displaystyle {\mathcal {A}}}
. In general
A
{\displaystyle A}
is an index set if for every
x
,
y
∈
N
{\displaystyle x,y\in \mathbb {N} }
with
φ
x
≃
φ
y
{\displaystyle \varphi _{x}\simeq \varphi _{y}}
(i.e. they index the same function), we have
x
∈
A
↔
y
∈
A
{\displaystyle x\in A\leftrightarrow y\in A}
. Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.
Index sets and Rice's theorem
Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem :
Let
C
{\displaystyle {\mathcal {C}}}
be a class of partial computable functions with its index set
C
{\displaystyle C}
. Then
C
{\displaystyle C}
is computable if and only if
C
{\displaystyle C}
is empty, or
C
{\displaystyle C}
is all of
N
{\displaystyle \mathbb {N} }
.
Rice's theorem says "any nontrivial property of partial computable functions is undecidable".
Completeness in the arithmetical hierarchy
Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy . Here, we say a
Σ
n
{\displaystyle \Sigma _{n}}
set
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
-complete if, for every
Σ
n
{\displaystyle \Sigma _{n}}
set
B
{\displaystyle B}
, there is an m-reduction from
B
{\displaystyle B}
to
A
{\displaystyle A}
.
Π
n
{\displaystyle \Pi _{n}}
-completeness is defined similarly. Here are some examples:
E
m
p
=
{
e
:
W
e
=
∅
}
{\displaystyle \mathrm {Emp} =\{e\,:\,W_{e}=\varnothing \}}
is
Π
1
{\displaystyle \Pi _{1}}
-complete.
F
i
n
=
{
e
:
W
e
is finite
}
{\displaystyle \mathrm {Fin} =\{e\,:\,W_{e}{\text{ is finite}}\}}
is
Σ
2
{\displaystyle \Sigma _{2}}
-complete.
I
n
f
=
{
e
:
W
e
is infinite
}
{\displaystyle \mathrm {Inf} =\{e\,:\,W_{e}{\text{ is infinite}}\}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
T
o
t
=
{
e
:
φ
e
is total
}
=
{
e
:
W
e
=
N
}
{\displaystyle \mathrm {Tot} =\{e\,:\,\varphi _{e}{\text{ is total}}\}=\{e:W_{e}=\mathbb {N} \}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
C
o
n
=
{
e
:
φ
e
is total and constant
}
{\displaystyle \mathrm {Con} =\{e\,:\,\varphi _{e}{\text{ is total and constant}}\}}
is
Π
2
{\displaystyle \Pi _{2}}
-complete.
C
o
f
=
{
e
:
W
e
is cofinite
}
{\displaystyle \mathrm {Cof} =\{e\,:\,W_{e}{\text{ is cofinite}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
R
e
c
=
{
e
:
W
e
is computable
}
{\displaystyle \mathrm {Rec} =\{e\,:\,W_{e}{\text{ is computable}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
E
x
t
=
{
e
:
φ
e
is extendible to a total computable function
}
{\displaystyle \mathrm {Ext} =\{e\,:\,\varphi _{e}{\text{ is extendible to a total computable function}}\}}
is
Σ
3
{\displaystyle \Sigma _{3}}
-complete.
C
p
l
=
{
e
:
W
e
≡
T
H
P
}
{\displaystyle \mathrm {Cpl} =\{e\,:\,W_{e}\equiv _{\mathrm {T} }\mathrm {HP} \}}
is
Σ
4
{\displaystyle \Sigma _{4}}
-complete, where
H
P
{\displaystyle \mathrm {HP} }
is the halting problem .
Empirically, if the "most obvious" definition of a set
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
[resp.
Π
n
{\displaystyle \Pi _{n}}
], we can usually show that
A
{\displaystyle A}
is
Σ
n
{\displaystyle \Sigma _{n}}
-complete [resp.
Π
n
{\displaystyle \Pi _{n}}
-complete].
Notes
Odifreddi, P. G. Classical Recursion Theory, Volume 1 . ; page 151
Soare, Robert I. (2016), "Turing Reducibility" , Turing Computability , Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi :10.1007/978-3-642-31933-4_3 , ISBN 978-3-642-31932-7 , retrieved 2021-04-21
References
Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1 . Elsevier. p. 668. ISBN 0-444-89483-7 .
Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability . MIT Press. p. 482. ISBN 0-262-68052-1 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑